小学数学教学工作总结(2)

2021-06-13工作总结

小学数学教学工作总结 篇2

  一学期即将过去,可以说紧张忙碌而收获多多。总体看,全体数学教师认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,在继续推进我校“自主——创新”课堂教学模式的同时,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学,收到很好的效果。

  一、课程标准走进教师的心,进入课堂

  我们怎样教数学,《国家数学课程标准》对数学的教学内容,教学方式,教学评估教育价值观等多方面都提出了许多新的要求。无疑我们每位数学教师身置其中去迎接这种挑战,是我们每位教师必须重新思考的问题。开学初组织攻关教师和教研组长参加处组织的新课程标准及新教材培训学习,并参加处研究性学习培训。在各年级组织认真学习的基础上全体数学教师集中由黄丽娜陈艳红两位教师二次分学段培训,鲜明的理念,全新的框架,明晰的目标,有效的学习对新课程标准的基本理念,设计思路,课程目标,内容标准及课程实施建议有更深的了解,本学期各年级在新课程标准的指导教育教学改革跃上了一个新的台阶。

  二、课堂教学,师生之间学生之间交往互动,共同发展。

  本学期我们每位数学教师都是课堂教学的实践者,为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程,组织了第六届同组共研一课活动,在教研组长的带领下,紧扣新课程标准,和我校“自主——创新”的教学模式。在有限的时间吃透教材,分工撰写教案,以组讨论定搞,每个人根据本班学生情况说课、主讲、自评;积极利用各种教学资源,创造性地使用教材公开轮讲,反复听评,从研、讲、听、评中推敲完善出精彩的案例。近三年的改革收获?多,课前准备不流于形式,变成一种实实在在的研究,教师的群体智慧得到充分发挥,课后的反思为以后的教学积累了许多有益的经验与启示,十一月中旬我们举办了为期一周第六届 教学节,七位教师分别代表各组讲了课,三节评为优质课,这次公开教学,呈现开放性,突破原有学科教学的封闭状态,把学生置于一种开放、主动、多元的学习环境和学习态势中。突出过程性,注重学习结果,更注重学习过程以及学生在学习过程中的感受和体验。 常思考,常研究,常总结,以科研促课改,以创新求发展, 进一步转变教育观念,坚持“以人为本,促进学生全面发展,打好基础,培养学生创新能力”,以“自主——创新”课堂教学模式的研究与运用为重点,努力实现教学高质量,课堂高效率。

  一学期即将过去,紧张忙碌而收获多多。我认真执行学校教育教学工作计划和学科教学计划,积极探索,改革教学,在继续推进“初中数学活动化课堂教学模式”的同时,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,潜心钻研教材,积极探索,改革课堂教学,收到很好的教育教学效果。

小学数学教学工作总结 篇3

  数学教学设计是数学教学的预案,是一种课堂教学前对教学实践的计划。这一计划在课堂上的实施可能出现一些课前没有预想到的一些情况。如与我们设想的不同,多数学生在理解概念上出现了困难。又如,某些教学材料的选择和安排并不如我们预想的那样有效。当然,也有些情况与我们预想的完全相同。总结教学设计和实践中的优点和不足是教学反思的基本内容。

  仅是总结优点和不足是不够的,教学反思应该更进一步,即明确教学设计合理性的理论基础是什么?不足的原因是什么?应该如何改进?因此数学教学反思可以在宏观层面,如是否符合某种教育理念。但是我认为,要使反思成为有效的教师专业发展途径,反思一定要回到一些微观层面。特别是不能只停留在教育学层面来反思数学教学。

  根据以上分析,我们认为:教学反思主要可以从数学教学是否能够体现数学本质、数学教学和数学学习三个方面来进行。以下就三节直线与平面垂直判定的教学进行的浅见,供同行们参考。

  一、数学本质

  数学的本质是多方面的,是区别于其他学科而且是数学科学本身所特有的特征。例如,数学提供了一些有特色的思考问题方式,如从数据中进行推理、最优化、直观分析与理性分析等。这些思考问题方式区别于其他学科的思维方式。直线与平面垂直的概念与判定体现了将复杂问题简单化、降维、直观分析与理性分析等数学特有的思考问题的方式。将直线与任意直线垂直这样复杂的问题转化为与两条相交直线垂直关系的判定,体现了简单化、降维的思维方式。能够通过数学知识和方法承载的数学思考问题的方式的揭示,将为学生提供体会数学思考问题方式提供必要的外部条件。

  我认为:本节课应体现的数学特有的思考问题方式有是“简单化”,具体有两个方面:第一,从任意直线、无数条到两条相交直线,第二,利用直线与直线位置关系来判定直线与平面的位置关系。就此而言,第一节和第三节课上均得到了较好地体现。两位数学教师均通过分析应用概念来判定直线与平面垂直的复杂性来说明简单化直线与平面垂直判定条件的必要性。教学中,任意、无数条到两条相交直线与已知直线的位置关系的简化过程很好地体现了简单化的思考问题方式。

  二、数学教学

  数学教学包含多方面的内容,如教学目标是否适当、明确,教学重点是否突出、教学内容、活动是否有利于达到教学目标(即教学内容和教学活动安排是否合理),教学媒体使用是否合理等内容。

  本文只就数学教学是否有利于促进学生的数学知识的形成、教学内容和活动设计是否有利于教学目标达成两个方面进行部分反思。

  1.知识的形成过程实际上是为了确定新知识的生长点和有效的知识形成方式,也就是向学习者揭示新旧知识之间联系,是有意义学习的必要条件。如从实际背景中感知直线与平面垂直的形象,抽象得到直线与平面垂直的定义,通过立竿见影揭示直线与平面垂直的概念,就较好地体现了直线与平面垂直概念的形成过程。其中直线与平面垂直的直观形象与概念的生长点,而抽象、解释、归纳和概况是形成直线与平面垂直概念有效的方式。

  从三节课可以看出,教师都非常重视概念的形成过程的教学,这与以往的概念教学有些区别。这一点是值得肯定的。然而,三个教学方案中存在一个非常重要的问题没有得到足够的重视:多数学生在感知直线与平面垂直的直观形象后,会如何定义直线与平面垂直呢?据课堂观察,多数学生很容易从图形直观抽取出直线与平面垂直的位置关系,但是要促进学生概念的形成,教师需要充分考虑学生可能给出概念的定义水平。

  教学中,虽然有教师要求学生给出概念的定义,但是后续的教学过程基本上没有认真对待学生可能给出的定义水平。如教师提出问题之后,很快就到立竿见影的演示,希望学生能够从中归纳概况出概念。如果我们充分考虑学生可能给出的概念定义水平,那么可要求学生自己给出直线与平面垂直概念的定义,然后通过辨别(是一种基本的概念认知方式)、解释等活动来促进学生形成正确的数学概念。在三个教学案例中,教师基本上没有给学生更多的辨析的时间和机会,而是在力求引导学生。

  在判定定理的归纳、概况过程中,三位教师都较好地把握了定理的形成过程。如,在辨别任意、无数的基础上,结合折纸实验和观察实物,可以有效地促进学生归纳出直线与平面垂直的判定定理。

  2.教学内容和活动设计是否有利于教学目标达成。教学目标的定向作用表现在教学内容、教学活动、教学策略、教学媒体的选择和安排都要能否实现目标为基本的依据。如教学活动要使学生掌握某种数学技能,那么对应的教学内容必须要安排相应的练习题,学生必须要独立进行练习活动。

  显然,要充分发挥目标的定向(或导向)作用,首先要考虑教学目标的描述要恰当。如,有教师将这节课的一个目标描述为:“能应用判定定理证明一些空间位置关系的简单命题”。由于空间位置关系的简单命题不够具体和明确,所以教师在选择相应材料时就会较为模糊。我们认为可以将目标改为“能应用判定定理证明直线和平面垂直的问题(或简单问题)”。

  第二,要认真分析达成学习(或教学)目标的支持性条件。如,要使学生能够应用判定定理证明直线与平面垂直,首先要提高学生对定理条件线索有一定的认知,并有一定的敏感性。显然,教学设计中,三位教师都注意到对定理条件的认知。如,通过折纸实验来解释相交和平面内两线索的重要性或关键性。但相对来说,绍兴的陈老师的设计得更科学些。他在教学中除了上述教学活动外,还要求学生在长方体中寻找与某一平面垂直的直线,并说明理由。这一活动可以将学生的注意力集中到判定定理的条件线索。

  要提高对条件线索的敏感性,就需要同类问题的解决经验,并形成归纳。这就要求后续的练习应围绕“线线垂直”线索的寻求或判定为重点,从而达到突出条件线索的相似性。这一点绍兴的陈老师的设计符合学习的规律。

  然而,黄岩中学的黄老师就更多的受到教材本身的影响,及以教材提供的练习作为学生练习的材料。实际上,分析这些材料,我们会发现,这些练习题(中心、重心)的判定应用的知识较多,不易突出判定定理的条件线索。

  三、数学学习

  影响数学学习的因素很多,我们教师在数学学习这一层次上分析教学,主要应侧重对影响数学学习的因素进行分析,如是否充分调动了学生学习的积极性,教学材料和数学活动的安排是否考虑到是否考虑到学生的的知识水平和心理发展水平等。教师可以通过这一层面的反思来确定教学过程中某些教学处理、教学材料的选择和安排的作用、或者缺陷。

  在此,我要对影响“直线与平面垂直概念及其判定”的另一个容易忽视的因素,即数学知识本身的多少及其复杂性进行分析。

  研究表明:这一因素是影响数学学校效率的重要因素。三个教学方案中,主要涉及以下新知识:

  (1)直线与平面垂直的概念

  (2)直线与平面垂直的判定定理及其应用另外,直线与平面垂直的判定定理涉及到三条直线和一个平面四个元素,及其两条直线在平面内,两条直线相交和两个两条直线垂直关系等六个位置关系,根据工作记忆理论研究,这样的知识是较为复杂的性。因此要让多数学生在一节课内理解和掌握它将存在一定的困难。为此,教学上应仅可能将学生的学习重点放在直线与判定定理及其应用。如果增加知识

  (3)将会导致多数学生学习效率降低。因此,建议将“,则”的应用放在第二节课上。

上一篇:【实用】数学教学工作总结范文集合7篇下一篇:【精选】小学教学工作总结模板集锦8篇