高一数学教案:变量与函数的概念

2020-06-22教案

  学习目标:

  (1)理解函数的概念

  (2)会用集合与对应语言来刻画函数,

  (3)了解构成函数的要素。

  重点:

  函数概念的理解

  难点

  函数符号y=f(x)的理解

  知识梳理:

  自学课本P29—P31,填充以下空格。

  1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。

  2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。

  3、因为函数的值域被 完全确定,所以确定一个函数只需要

  。

  4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:

  ① ;② 。

  5、设a, b是两个实数,且a

  (1)满足不等式 的实数x的集合叫做闭区间,记作 。

  (2)满足不等式a

  (3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;

  分别满足x≥a,x>a,x≤a,x

  其中实数a, b表示区间的两端点。

  完成课本P33,练习A 1、2;练习B 1、2、3。

  例题解析

  题型一:函数的概念

  例1:下图中可表示函数y=f(x)的图像的只可能是( )

  练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。

  题型二:相同函数的判断问题

  例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与

  ④ 与 其中表示同一函数的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  练习:已知下列四组函数,表示同一函数的是( )

  A. 和 B. 和

  C. 和 D. 和

  题型三:函数的.定义域和值域问题

  例3:求函数f(x)= 的定义域

  练习:课本P33练习A组 4.

  例4:求函数 , ,在0,1,2处的函数值和值域。

  当堂检测

  1、下列各组函数中,表示同一个函数的是( A )

  A、 B、

  C、 D、

  2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、给出下列四个命题:

  ① 函数就是两个数集之间的对应关系;

  ② 若函数的定义域只含有一个元素,则值域也只含有一个元素;

  ③ 因为 的函数值不随 的变化而变化,所以 不是函数;

  ④ 定义域和对应关系确定后,函数的值域也就确定了.

  其中正确的有( B )

  A. 1 个 B. 2 个 C. 3个 D. 4 个

  4、下列函数完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四个图形中,不能表示函数的图象的是 ( B )

  6、设 ,则 等于 ( D )

  A. B. C. 1 D.0

  7、已知函数 ,求 的值.( )

【高一数学教案:变量与函数的概念】相关文章:

1.函数的概念的数学教案

2.变量与函数达标试题及答案

3.变量与函数评课稿范文

4.高中变量与函数说课稿

5.变量与函数说课稿课件

6.关于函数与变量的测试题

7.初中数学《变量与函数》教案

8.数学下册变量与函数测试题

上一篇:第一册函数的概念教学教案下一篇:关于教学设计的概念总结