关于中考数学一模函数必做专题试题(2)

2018-07-17试题

  ∵x=3时,y=3,9a+3b+c=3,∵c=3,9a+3b+3=3,9a+3b=0,3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;

  ∵x=﹣1时,ax2+bx+c=﹣1,x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,当﹣10,故(4)正确.

  故选B.

  【点评】:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.

  3、(2014年山东烟台第11题)二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:

  ①4a+b=0;②9a+c③8a+7b+2c④当x﹣1时,y的值随x值的增大而增大.

  其中正确的结论有()

  A.1个 B. 2个 C. 3个 D. 4个

  【分析】:根据抛物线的对称轴为直线x=﹣ =2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c0,即9a+c由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a0,于是有8a+7b+2c由于对称轴为直线x=2,根据二次函数的性质得到当x2时,y随x的增大而减小.

  【解答】:∵抛物线的对称轴为直线x=﹣ =2,b=﹣4a,即4a+b=0,所以①正确;

  ∵当x=﹣3时,y0,9a﹣3b+c0,即9a+c3b,所以②错误;

  ∵抛物线与x轴的一个交点为(﹣1,0),a﹣b+c=0,

  而b=﹣4a,a+4a+c=0,即c=﹣5a,8a+7b+2c=8a﹣28a﹣10a=﹣30a,

  ∵抛物线开口向下,a0,8a+7b+2c0,所以③正确;

  ∵对称轴为直线x=2,

  当﹣12时,y随x的增大而减小,所以④错误.故选B.

  【点评】:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac0时,抛物线与x轴没有交点.

上一篇:关于三角形的边的试题下一篇:小学四年级数学有关三角形的测试题