海底输气复合管道焊接工艺研究论文
1焊丝材料选择
选择焊丝,不但要考虑焊接形式对焊接材料的要求,更重要的是要考虑焊丝熔融后和管材母体材料的熔合后的内部晶像组织结构,从而显现出最终需要的焊道的机械性能。尤其对于复合管道而言,又要同时考虑焊丝与两种不同机体的管材焊接后的焊道机械性能,焊丝的选择则显得尤为重要。
1)Incoloy625合金与X65钢的化学成分差别很大。在焊接时,合理选择两种合金过渡层的焊接材料非常重要。考虑到合金成分的稀释问题,应尽量使用合金成分含量高的焊接材料,同时应尽量使用浅熔深的焊接方法和操作要领,避免合金的进一步稀释。
2)S和Si等杂质在Incoloy625合金的焊缝金属中容易偏析。S和Ni形成Ni-NiS低熔点共晶,在焊缝金属凝固过程中,这种低熔点共晶在晶间形成一层液态薄膜,在焊接应力的作用下可能形成晶间裂纹。焊接过程中Si和O等形成复杂的硅酸盐,在晶界形成一层脆的硅酸盐薄膜,在焊缝金属凝固过程中或凝固后的高温区,形成高温低塑性裂纹。
3)Incoloy625合金与X65级钢在力学性能和物理性能上存在着较大的差异。导热率不同,会改变焊接时的温度场分布,从而改变焊缝的结晶条件。导热率大的金属首先冷却、结晶,造成焊缝成分和组织的不均匀性;导热性差,焊接热量不易通过传导而散出,焊接熔池容易过热,造成室温显微组织晶粒粗大,使晶间夹层增厚,减弱了晶间结合力,延长了焊缝金属的凝固时间,助长了热裂纹的形成。Incoloy625合金与X65级钢的导热率有7倍以上的差别,从而使得这种趋势变得更加明显。
4)Incoloy625合金与X65级钢的线膨胀系数不同。焊接时由于焊接热循环的作用,在这两种合金内部产生交变的加热和冷却,加之这两种合金热膨胀的量和冷却时收缩的量差别较大,会在接头处产生较大的焊接残余应力。
5)Incoloy625合金与X65级钢的磁性不同,一种无磁性,一种有磁性。在焊接时,由于两种材料的磁性不同,容易造成电弧磁偏吹,从而使焊缝成形变差,甚至会造成焊缝夹渣、未熔合等焊接缺陷,影响焊接质量。
6)对于Incoloy625合金及其他的奥氏体不锈钢来说,在450~850℃高温持续服役的过程中存在发生晶间腐蚀的可能性,所以应将焊接时的层间温度控制在合理范围以内,减少t8/5的时间(800℃-500℃冷却需要的时间),减少影响焊接接头性能的因素。而对于X65级钢而言,过快的冷却速度容易产生脆硬性组织,在焊接接头过热区的局部产生魏氏组织,对接头的力学性能不利,故焊接时应注意预热和保持一定的层间温度。
7)焊接复合钢管与焊接复合钢板的不同之处就是受管径的`限制。焊接复合钢管时,只能先焊覆层,再焊过渡层,后焊基层。在焊接过程中,应采取有效的保护措施和焊接技术,以防止覆层金属根焊焊缝的合金元素被烧损和氧化;同时需要合理的焊接操作技术,焊接过程尽量采用浅熔深,避免合金被过渡稀释,影响焊缝的使用性能。
2端口焊接要求
液压胀管技术生产的复合管中,不锈钢内壁与外部碳钢管壁的结合力较低,在焊接过程中,焊接高温作用下,热胀冷缩造成复合管壁的结合界面处分离。为了保证管道焊接处的耐蚀性能,在管道端口处首先进行堆焊,技术及工艺要求见图1、2。堆焊长度大于10mm,堆焊层厚度大于3.5mm。根焊工作是复合管焊接的核心技术,由于衬管壁厚薄,在液压胀管过程中,椭圆度控制难度大,在对口焊接时,尤其要注意错边量的控制,焊接时必须保证不锈钢层的良好熔合。在端口焊接前需要对端口进行矫形,保证端口的圆度。端口堆焊完毕后,对端口表面进行切削,使表面堆焊层表面光滑。准备工作中应重视制定合理的焊接工艺。
3焊接工艺制定
选用MIG焊接。选用Incoloy625镍基焊丝,焊丝直径1.2mm。一般而言,为提高焊缝的耐腐蚀性能,根据YB/T5092-1996《焊接用不锈钢丝》的规定,选用H0Cr26Ni21焊丝,Cr含量为25%~28%,Ni含量为20.0%~22.5%,基本满足不锈钢焊缝的性能要求。但是在焊接复合管时,由于在焊接过程碳钢母材熔化,对焊缝的化学成分产生较大的稀释问题,降低了焊缝的耐腐蚀性能。
4结论
海底输气复合管道既满足对于管道强度、韧性的要求,也满足内壁抗腐蚀性。从长远来看,复合管道代替单一的管线钢是未来发展的趋势,可以大规模推广。采用不同的抗腐蚀钢来作为内衬管,焊接工艺的制定对于管道复合至关重要,机械复合相对于冶金复合制作简单,也可节约成本,合理制定焊接工艺是保证焊接接头强度、韧性等性能。
【海底输气复合管道焊接工艺研究论文】相关文章:
8.市政管道工程论文