《等式与方程》教学反思
作为一名人民老师,我们的工作之一就是教学,对教学中的新发现可以写在教学反思中,那么教学反思应该怎么写才合适呢?以下是小编为大家收集的《等式与方程》教学反思,仅供参考,大家一起来看看吧。
《等式与方程》教学反思1
本节课是等式与方程的第一课时,就单单等式和方程的概念,学生很容易理解,本节课需要克服的难点是让学生充分理解方程和等式的关系,从而理解方程的意义。这是一个由浅及深的过程,首先,学生先接触方程的概念,从概念中发现方程是等式,再通过比较发现所有的方程都是等式,但有些等式却不是方程。再通过集合图的形式让学生真正发现方程和等式的关系。
这时回过去细细品味方程的含义:含有未知数的等式叫方程。应该可以对方程有更深刻的理解:等式里可以都是数字,也可以有字母,那不管是有字母(未知数)还是只有数字,这些都是等式;但在这其中,只有含有字母(未知数)的等式才叫作方程。我们平时教学,为了简单易懂,往往会让学生记简单的方法,比如看有等号的就是等式,有等号又有字母的就是方程。这是将方程和等式关系的割裂,不利于学生形成知识的联系。要想构建方程的含义就必须从等式来看,由此反看本课的教学设计,如何体现等式到方程这样一个知识变化的过程用几张静态的图片是不行的。
它割裂了事物的变化过程,因此我觉得采用实物的天平来变化地演示,可以让学生将等式更合理地迁移到方程,仔细观察,其实课本也是这样子地安排,只是限于表现形式,让老师误以为是几张图片。第二张图片是将第一张图片中地鸡蛋换成木块(未知数),第三张图片是将第二张图片右边加上50g,第四张图片是将右边再加上50g,最后一张图片是将左侧地50g换成木块(未知数)。在通过例1认识了等式以后很快我们便能找到这些含有字母地等式,从而明确:等式中可以都是数字也可以有数字和字母(未知数)。
接着,自然而然地介绍:但含有未知数的这些等式又有个特殊地名字——方程。这个时候方程的含义就呼之欲出了。通过这样子的教学,我觉得知识是生长的,有联系的;而不是割裂和碎片化的。
《等式与方程》教学反思2
本课从天平的平衡与不平衡引出等式,根据老师提供的天平图,学生写出等式或不等式,再把这些学生写出的式子进行分类,从分类中的得出等式和方程之间的联系,展示了学习的过程。学习的整个过程符合儿童认知发展的一般规律。从生活实际——天平实验中引进,学生有生活的经验,很自然地想到两种不同情况,并用式子表示,引出等式;其中有含有未知数、不含未知数的两种形式。体现“生活中有数学,数学可以展现生活”这一大众数学观,也体现了科学的本质是“来源于生活,运用于生活”。通过观察,探寻式子特点,再把这些式子进行两次分类,在分类中得出方程的意义,也看出了构成方程的两个条件,反映了认识事物从具体到抽象的一般过程。但在教学过程中存在很多问题。
一、对于突发状况不能机智应对,
在各小组交流时,部分学生没按要求做,而是把题中给的x计算出来,我在小组巡视的时候已经看见但没提示学生,导致挑战组在交流的时候出现三个错误,这是我应该讲解一个,可我三个一一讲解,浪费了时间。
在班级展示提升环节,学生分类时位置不对,这时,应该放手让学生去做,而不是指挥学生放的位置,导致学生不知所措。
二、对于教学设计不能熟记于心
在学生进行分类时,我竟然忘了5+a存在,导致学生误解为它是不等式,所以在做游戏这个环节,学生就误解为2a+10为不等式,可想而知,由于我的疏忽大意导致学生的误解,在这方面我要更加谨慎。
三、课上语言随意性
在游戏这个环节,应说不含未知数的等式请回倒座位,我却把未知数说成了字母,这样说学生可能就认为是字母了。
在以后的教学中我课前应该思考该怎么说,而不是随意说,让学生误解。在今后教学中,我一定要真正让学生放手去做,相信孩子的能力,逐步的提高自己的教学水平。
《等式与方程》教学反思3
先前认真阅读了这一单元的教材,发现与老教材有较大的变化。又认真阅读了备课手册上侯正海老师的文章《初步体会方程的思想——“方程”教学建议》。于是对方程教材的编排体系有了大致的了解。
昨天让学生预习:数学教材1到2页,并且完成《补充习题》第一页。预习的好处显而易见,我发现:学生对于列方程问题不大(只是少数学生在列方程时写单位),问题大量地出在对“等式”“方程”“式子”的概念的理解和区分上。所以,今天这堂课的难点就是让学生深刻理解和熟悉“等式”和“方程”的概念及其联系和区别。
教学过程简录:口算;教学例1,理解等式;教学例2,理解等式与不等式,把等式分类,分成不含未知数的等式和含有未知数的等式,揭示方程的概念,解释50+50=100,X+50〈200,X+8不是方程的原因;订正〈补充练习〉第一题;揭示等式和方程的区别和联系——等式包括方程,方程是一类特殊的等式;让学生做“试一试”,比较根据第二张图列的方程12+X=20,一位学生补充了20-X=12,我补充了20-12=X,先确定这三个等式都是方程,但第三个方程一般是不列的,因为根据20-12可以直接得出答案,它就相当于算术方法解题了。我强调:看完图,顺向思维,直接得到的方程,一般是最好的——点到位止,我知道学生对于我的话不一定理解的,就给予一定的暗示和渗透吧。完成“练一练”,重点是第一题(我让学生写出来的)。
反思:由于难点吃透,学生对于方程的意义已经掌握了——做到能背能举例能比较能说明,但在“练一练”的回答上我有疑惑。哪些是等式,哪些是方程。我估计教材的意图是指哪些是不包括方程的等式,哪些是方程,我也是按这样的要求让学生写的,但我还是让学生说说方程全部是等式。教学后,总感别扭。“哪些是等式,哪些是方程”的问法是二分法,所以我才让学生写等式时不写方程。如果这样要求,哪些是等式?再把等式中的方程找出来。这样要求,可能更加清楚,不会让我疑惑了。