说的是两百多年以前的一段小故事,一位9岁小孩的数学天才使他的老师大吃一惊。
1787年,在德国一所乡村小学的三年级课堂里,数学老师出了一道计算题:
1+2+3+4+5+…+98+99+100。
把100个数一个一个地加起来,这件事让三年级的小同学来做,是一种考验。
不料,老师刚说完题目,班级里的一位学生,名叫高斯,就把他写好答案的小石板交上去了。
起初老师毫不在意。这么快就交来,谁知道写了些什么呢?
后来发现,全班只有一个人做对,就是这位飞快交卷的高斯。
高斯解答的方法更使老师惊讶不已。
高斯把这100个数从两头往中间,一边取一个,配起对来,1和100,2和99,3和98,…,共计配成50对,每一对两个数相加都等于101,因而原式=101×50=5050。
这种算法虽然不是小高斯首创,但是事先谁也没有教过他。在两百多年前的德国,这样的计算方法是在大学里讲授,叫做等差级数求和。即使在科学技术突飞猛进的今天,等差级数求和也要到高中数学课里才系统地学习。当年只有9岁的高斯,出身农户,家境贫寒,居然这样勤于动脑,善于动脑,使老师无比欣慰和深受感动。老师名叫彪特耐尔,特意到大城市汉堡买来数学书,送给高斯看,并且请自己的年轻助手巴特尔斯对高斯多多关照。
后来呢?
后来高斯继续勤奋学习,刻苦钻研,在数学、天文学和物理学中作出许许多多重大贡献,被称为“数学家之王”,和阿基米德、牛顿齐名。高斯是数学史上一颗光芒永恒的天王巨星。
中国人常说,“自古英雄出少年”。
少年人有很多机会,能从同辈和长辈那里学习各种各样的好主意、好思路、好方法、好技巧、好经验,用来武装自己。无论是数学课、数学竞赛,还是趣味数学读物,都会通过趣题、趣事、趣话,不知不觉中,介绍一些在大问题大理论大场面里大显身手卓有成效的数学思想,铺的道是快道,搭的桥是天桥,架的梯是云梯。无数灿烂辉煌的数学新星,将会从现在的少年朋友里成长起来!