(一)成功之处
第一,基础知识复习引入成功。本节课中,我认为做得较好的就是复习引入,因为复习的内容能够使学生很快进入课堂,也活跃了课堂气氛,这也给本节课奠定了一个很好的学习氛围基础,同时学生的大脑也进入了加速运转的状态,在这样一种状态下在讲解新课,那么他们接受新知识就有了保障,同时也让学生明白了课前课后复习的重要性,也有利于培养学生良好的学习习惯,做到温故而知新,为了能节省时间,提高课堂效率,在复习中我大都是口头表达复习,这也给学生提供了一个善于表达数学语言的机会,复习中我重点复习了求作两个向量的和的两种法则三角形法则以及平行四边形法则,因为这两个法则在后面的新课讲解中会涉及到,在复习这两个法则时,我根据上个课时的作业情况强调了一些要注意的地方,譬如向量上面没有标上箭头,或是和向量的方向应该是由谁指向谁。
第二,重难点把握成功。我认为另一个亮点就是很好地突出了对两个向量减法的理解和两个向量的差向量的做法这两个重点,为了求作向量的差,我是先让学生求作向量 与向量的和向量(如下图),因为很多学生不知道向量 的方向为什么是从向量 的终点指向向量 的终点,所以在备课的时候我就想到了这个方法用于突破这一难点,如果能突破这一难点,那么本节课的教学难点也得到看突破
在讲解求作两个向量的差向量时候,规范板书出求作的步骤,并引导学生一起总结出了向量差的三角形法则的两个要点:起点相同,方向为减向量的终点指向被减向量的终点。为了更现象化,简化为:起点相同,箭头指向被减向量。之后在练习求作两个向量的差向量时,很多后进生也能够根据此要点作出了。
第三,例题与练习交叉进行。根据前苏联的凯洛夫的教学论思想:在教学内容上强调双基教学,即强调基础知识的教学和基本技能的训练。学生通过模仿练习领悟新知、记忆新知,这在教学环节中是不可缺少的,但不能以此为限,有效的巩固必须经多次循环,将所学知识应用到新情境中方能达到。根据此教学论思想,我在讲解例1已知向量 、 、 、 ,求作向量 - 、 - 后,就相应给出了一下练习:P112 1.(1)、(2);在讲解例2平行四边形 中, , ,用 , 表示向量 、 后,就相应给出了一下练习:《导与练》P94 9;在讲解例3 化简 后,就相应给出了一下练习:P112 2,P113 6.(4)-(7)。
(二)不足之处
第一,时间安排没有经验。由于在讲解求作两个向量的差向量中还介绍了另外一种方法,即采用相反向量以及两个向量的和来根据平行四边形法则求作,所以时间上的安排就显得有点急促,本来已经安排好的一个内容特殊情况:当 // 时,如何求作 就没来得及讲,所以没有很好地使教学内容系统化,完整化,深入化。
第二,师生交流不够。如果在课堂上缺少师生之间的交流,那么可以说这节课堂是不够完美的,但是内容与时间的矛盾又不得不牺牲讨论、交流的时间,课后我就想(马慧芳师姐给我的建议),其实本节课我是讲得比较多的,学生没有太多的机会来交流自己的想法或是观点,这样,长久以往,也许会形成学生过于依赖老师,也就是说没有从学会转变为会学,更不用说让他们从要我学到我要学的锐变了。