小学数学找规律教学反思

2021-06-15教学反思

小学数学找规律教学反思(精选5篇)

  作为一名到岗不久的老师,我们的工作之一就是课堂教学,借助教学反思我们可以快速提升自己的教学能力,那么应当如何写教学反思呢?下面是小编为大家整理的小学数学找规律教学反思(精选5篇),欢迎大家分享。

  小学数学找规律教学反思1

  本学期的找规律单元是要学生用平移的方法探索并发现简单图形覆盖现象中的规律,能根据把图形平移的次数推算被该图形覆盖的总次数,解决相应的简单实际问题。

  开始,我出示了一张由1-10组成的数表和一个红色方框,指出用这个框每次可以框出两个相邻数,得到一个和后,我问学生:“这样移动方框一共可以得到多少种不同的和?”然后让学生可以拿着手中的数表想一想,也可以框一框,在很多学生有了答案后,我让学生发言说出自己的想法。我以为学生会按照书上的本意,用一一列举的方法来求出答案:1+2,2+3,3+4,……9+10。结果那位学生却回答说:10-1=9。这是书上与我预设时都没考虑到的,我当时有一点小小的意外,但我还是微笑着鼓励他说说他的想法。可能这是他的一种直觉思维吧,他一时解释不出这样算的原因。我知道他这样做是完全可以解释的:第一,可从找规律的角度来解释。如果有2个数,每次框相邻2个数,就得到1个和,如果有3个数,每次框相邻两个数,就得到2个不同的和,照此下去,有10个数,每次框2个相邻数,就会得到9个不同的和,所以10-1=9;第二,可从排头法的角度来解释。一次框出2个数,1可以排头,2可以排头……9也可以排头,10不能排头,10个数中有1个数不能排头,所以10-1=9(种)。当时我有几秒的犹豫,是帮助他把这种思路更加明晰呢?还是继续演绎预设的教案?为了不让课堂节外生枝,我选择了后者。虽然很顺利地完成了教学任务,但自己总觉得缺少了点什么。

  接着,继续用红色方框分别框住2个、3个、4个、5个后,我出示了表格,并提出了书上的两个问题:

  (1)平移的次数与每次框出的个数有什么关系?

  (2)不同和的个数与平移的次数有什么关系?让学生通过小组交流来找出规律。学生经过独立思考,小组讨论,纷纷发现了规律。在汇报第一个问题时,出现了这样几种答案:

  (1)每次框出的个数与平移的次数相加和是10;

  (2)每次框出的个数是相邻的自然数,而四次平移的次数也是相邻的自然数;

  (3)每次框出的个数与平移的次数奇偶性相同,或者都是偶数,或者都是奇数;

  (4)每次框出的个数与平移的次数的逐渐减少2。看来学生的思维很活跃,寻找规律的角度也很新颖,从看两者的和联系到了看两者的差,从横向寻找规律联系到纵向的比较,前两条规律是我预设到的,而后两条却是没考虑过的。当学生汇报后,我知道后两个发现并没有普遍性,但该如何向孩子们解释后两个发现只是特例呢?如果再换例说明显然太费时,也并不一定能讲清,而且还会冲淡主题,把本质的东西给抛弃了,得不偿失。但如果肯定他们的发现是对的话,显然又不行。当时我说:“你们很聪明,在这一道简单的例题中,发现的可真多。”虽然话是这样说了,但自己感觉心中特没底气。

  课上完了,感觉自己对教材深层次的钻研能力还需加强,对课堂中学生即时生成的资源,我没能很好地利用与把握住。

  小学数学找规律教学反思2

  回顾本节课的教学,当我一出示例题的情景图后,就有个别学生就把乘法算式脱口而出,但是当我问到:“为什么这样列式?”时,学生无语。本节课的要求是让学生能够根据实际问题采用罗列、连线和画图等方式,找出简单事物的排列数,并发现一些规律,至于“用乘法计算”,教师不能急于提出,针对此,我把教学的重点放在了学生用数学语言的表达上,让学生动手摆一摆,并通过连线来记录不同的搭配方法,然后在小组中交流操作的方法,并结合乘法的意义,表达两种思考方法:一种是一顶帽子和一个木偶搭配有3种搭配方法,现在有2顶帽子就有2个3种搭配方法,共有2×3=6(种);另一种是一个木偶和一顶帽子搭配有2种搭配方法,现在有3个木偶就有3个2种搭配,共有3×2=6(种)。然后学生通过学生观察、讨论并发现了木偶的个数、帽子的顶数和有多少种搭配方法是的关系,学生经历了“实践操作----方法提升----建立模型”的过程,教学效果不错。

  本节课引导学生探索两种事物进行简单搭配的规律。通过学习,指导学生有顺序、有条理,由具体到抽象地进行思考,探索出多种搭配方法的数量关系,发展学生的思维,并让学生在解决问题的过程中体会到现实生活中的问题可以用数学方法去解决。在课前我让学生准备好课上操作的木偶娃娃和帽子,(可在纸上画,再涂色)我发现学生在课堂上自己操作搭配时方法多样:有用实物的、画图的、有连线的,同时也注意到了按顺序搭配,及连线时图形的摆放位置等。通过学生自主学习交流后,再让学生到前面演示,同学生们很会说,并且都知道有6种不同的搭配。在这个基础上我引导学生列出乘法算式,即找出用乘法计算的规律。后面的练习,对于数量关系中几个几,我又作了重点强调,让学生明白为什么列出这样的乘法算式,加深对规律的认识,进一步理解用乘法做的原理。

  今天教学了找规律的第一课时搭配问题,这是继间隔问题后的找规律问题。大家都认为本课教学很简单,学生都通过连线找到结果。我在教学前就思考,在学生通过自己的方式解决例题后,师生共同优化方法,理解连线(搭配)的过程中的有序性。然后把重点放在让学生有条理地表述搭配的过程,如“一顶帽子可以分别和4件上衣搭配有4中搭配方法,3顶帽子就会有3个4种搭配方法”,或“一件上衣可以分别和3顶帽子搭配有3种搭配方法,4件上衣就有4个3种搭配方法”。表述有困难的学生我让他们连出第一步的搭配过程,就是只拿出一类中的一种分别和另一类的几种搭配的连线图,再让他看着这一“半成品”图表述出搭配过程及算式的意义。这样的过程在别人看来或许多余,但我不这么认为,因为这一课虽然看似简单,但这一教学内容简单的目的就在于让学生在简单中找出规律,理解这一规律的实质,而不是仅仅让学生知道连线,知道用乘法解决,我们教学的目的不是在此。而且只知道连线的话,搭配的东西一多,连的线恐怕会自己都数不清吧。所以在内容较简单时我更愿意花时间帮助学生学会用数学语言表述算理及过程,正如课堂总结时我问学生,今天没学时你会解决例题中的问题,但通过这一节课的学习,你有没有收获呢,学生自己也说,没学时,我会一一搭配或通过连线找到答案,现在我还知道了这一答案的实际搭配规律。

上一篇:数学《找规律》的教学反思下一篇:母鸡教学设计