说课稿 篇5
一、指导思想
数学教学,要让学生在一种积极的思维状态下,亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过尝试活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。因此,在教学中我始终以学生发展为立足点,以自我尝试、讨论探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。
二、教材分析
《分数与除法》是人教版义务教育课程标准实验教科书五年级下册第四单元第二课时的内容。本节课,是在分数意义的基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商,这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。本节课比较抽象,学生容易理解用除法计算,但是理解计算结果比较困难一些。
三、教学目标
根据对教材的分析和学生的实际,依据数学课程标准的理念结合教材自身的特点和学生的认知规律,我确定教学目标如下:
(1)知识目标:
理解和掌握分数与除法的关系。
(2)能力目标:
通过动手操作,在学生充分感知的基础上,理解并形成分数与除法的关系。培养学生的实践、观察及创新能力,促进思维的发展。通过同学间的合作,进而促进学生的倾听、质疑等良好学习惯的养成
(3)情感与态度目标:
结合学生认知规律,激发学生的求知欲望,在具体的探究过程中培养学生的数学素养以及培养学生自我探索的意识和创新精神。
1、教学重点
经历探究过程,理解和掌握分数与除法的关系。
2、教学难点
理解用分数可以表示两个数相除的商
四、说教法、学法
学生认识事物是由易到难,由浅入深循序渐进的,由“感性认识上升到理性认识”的认知规律,学生虽然知道了分数的意义,但要使学生真正理解分数与除法的关系,必须遵循他们的认知规律。因此,本节课采取的教学方法是尝试教学法,利用学具让学生在具体的情境中大胆尝试,通过动手操作,观察发现,引导归纳出分数与除法的关系。学生的学法与教师的教法是一个有机的整体所以尝试探究、动手操作、发现问题、整理归纳贯穿于整节课。
总之,力途为学生营造一个宽松、民主的学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们在积极的数学思维状态下,真正感受到“我能行”。
五、说教学程序
针对以上思想,我说一下教学流程中的每一步设计意图:
(一)复习导入 点明课题
因为本节课是在分数意义的基础上进行的,所以让学生加深对分数的意义理解,明确本节课要干什么。开门见山出示课题。
(二)探究新知
1、唤起生成,由6张饼平均分给3个人,怎样列式得出除法,然后根据除法的意义顺势引导1张饼平均分成2份、3份、4份怎样列式,然后多媒体给学生以直观形象的演示,让学生理解分数可以写成除法。给学生以表象的认识。
2、尝试探究,首先提出问题:3张饼平均分给4个人,每人分几张?然后让学生利用学具动手操作分一分,讨论交流,并让学生展示分的过程,把课堂还给学生。同时根据学生的汇报多媒体展示分的过程。使学生明确三张的四分之一就是一张的四分之三,所以每人分四分之三张。
这时,当学生对知识的理解由感性上升到理性,所以马上进行补充事实,举一反三,2张饼平均分给4个人,每人分几张?3张饼平均分给5个人,每人分几张?这样学生就比较容易的迁移知识,得出2/4与3/5.
3、归纳概括,通过以上的动手尝试探究,学生经历了知识的形成过程,所以放手让学生观察发现分数与除法有什么关系,得出结论。同时使学生初步知道两个整数相除,只要除数不为0,不论能否除尽,都可以用分数来表示商。
(三)尝试练习
接着,就是学生进入当堂练习中,设计有层次的、题型多样的练习,及时的巩固新知,达到当堂学,当堂清的效果。使学生更进一步理解本节课所学内容。
六、说教学反思
本节课,是在分数意义的基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。
从总体来看,本节课学生能在具体的情境中动手操作,大胆尝试,兴趣比较浓厚,而且学生动手分的情况也比较好,也能大胆的展示,基本上掌握了分数与除法的关系。使我感受到数学的动手操作是课堂教学的一个重要途经。但还存在许多细节问题:
1.在课堂结构安排上有点前松后紧。
2.学生展示分的过程时没有点到位,有点乱,不太突出。
3.总结归纳时没有充分放手学生,而且比较急匆匆而过。
4.学生语言表达能力比较欠缺。
在以后的教学过程中要尽量克服这些困难,提高自己的课堂教学质量
说课稿 篇6
六年级上册《分数除法》说课稿 在改编成求每盒重多少千克的问题情境下,引出相应的三个除法算式:
○13003=100(克)=0.1(千克)
○20.33=0.1(千克)
○33/103=1/10(千克)
并进一步引导学生进行比较,从而理解分数除法的意义与整数、小数除法的意义相同。
3.练习:
1217= 204 2.81.5= 4.2 2/34=8/3
20412=( ) 4.21.5=( ) 8/34=( )
20417=( ) 4.22.8=( ) 8/32/3=( )
在前两步理解意义的基础上,及时安排相应的巩固练习。分别是已知三种形式的乘法算式,不计算直接写出相应除法算式的商。如:2/34=8/3,8/34=( ),8/32/3=( )
(二)自主探究,掌握算法。
第一步:教学4/52
1.创设问题情境:没有已知的乘法算式,你还会计算4/52这道分数除法吗?
○1鼓励尝试计算;
○2组织全班交流;
(预设学生反馈):
方法A.因为22/5=4/5,所以4/52=2/5
这是受刚才所学除法意义的影响,迁移而来;
方法B.4/52= 42/5=2/5
大部分是看到4与2的倍数关系,想当然的在计算;可能小部分能从数的组成进行解释。
方法C.4/52=4/51/2=2/5
课前预习过;但能说清为什么的恐怕很少。
2.引导理解方法B和C。
○1师:4/5里面有()个()/(),2表示平均分成两份,每份有()个()/();
○2师:在长方形里折一折,涂一涂,再来解释两种方法。
○3师:还有不同的分法吗?
在先请学生进行解释的基础上,引导思考: 4/5里面有()个()/(),2表示平均分成两份,每份有()个()/();在部分学生有所感悟的基础上,引导学生进一步验证,根据课前提供的五等分的长方形纸片,要求学生折一折、涂一涂,再来进行解释。
由于已经将长方形纵向五等分,因此从直观上很容易理解方法B。再进一步启发:还有不同的折法吗?鼓励学生寻求不同方法,比如说横向折,沿对角线折等等;
通过这些折法的体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它的12,也就是说始终可以将2转化为乘以1/2。
第二步:教学4/53
1.初步比较:你觉得哪种方法好?
2.尝试计算4/53;
(要求先折一折,涂一涂,再计算) (课前提供五等分的长方形纸片)
反馈,追问:
○1 平均分成3份,每份是( )的1/3? 求一个数的几分之几怎么计算?
○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?
首先请学生对两种方法进行初步比较:你觉得哪种方法好?这时并不急于统一思想,转而请学生计算4/53。也要求根据课前提供的五等分长方形纸片先折一折,涂一涂,再计算。
然后进行反馈,并引导思考:
○1 平均分成3份,每份是4/5的(1)/(3)? 求一个数的几分之几怎么计算?
○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?
此时通过对比和思考,应该说对方法C已经有了较为深刻的认识。
建构主义理论认为:学习不是学生被动接受老师授予的知识,也不是知识的简单积累,它是学习者认知结构的组织和重组,是学生主动建构知识意义的过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/53的求解过程,使学生自觉的在心里进行了比较,也就是主动的开始建构认识,这时的理解是较为深刻的理解。
第三步:实验与验证
1.师:其它这样的分数除法的计算是不是也和刚才两题一样呢?
在理解例题的基础上,抛出一个疑问:其它这样的分数除以整数的计算是不是也能将除数转化为乘以它的倒数呢?从学生的思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证的动机。然后根据课前提供的空白长方形纸条组织学生开展研究,并组织开展同伴间的交流。
现代认知理论认为:感知只有经过一般化的检验,才能上升成为知识。开展实验与验证符合从特殊到一般的需要,而且还是学生主动的、内在的需要,这无论是对理解掌握算法、还是对培养良好的数学思维习惯,都有积极的意义。
2.反馈交流。
归纳:(一般化计算方法)用符号表示: AB=A1/B
观察: (形式上看)什么变了,什么没变?
最后,组织进行反馈,得出最后结论,并引导学生将一般化的计算方法用符号化表示。这里不仅是为了培养学生的符号意识,包括之后的引导学生观察,(形式上看)什么变了,什么没变?其目的在于培养学生的概括能力,促进更好的理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识的客观性及其本质的更为深刻的理解,从而形成科学的态度和严谨的思维。