数学说课稿(4)

2021-06-13说课稿

数学说课稿 篇4

  一、说教材

  1.从在教材中的地位与作用来看

  《等比数列的前n项和》是数列这一章中的一个重要资料,它不仅仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,并且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

  2.从学生认知角度看

  从学生的思维特点看,很容易把本节资料与等差数列前n项和从公式的构成、特点等方面进行类比,这是进取因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不一样,这对学生的思维是一个突破,另外,对于q=1这一特殊情景,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

  3.学情分析

  教学对象是刚进入高中的学生,虽然具有必须的分析问题和解决问题的本事,逻辑思维本事也初步构成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,所以片面、不严谨.

  4.重点、难点

  教学重点:公式的推导、公式的特点和公式的运用.

  教学难点:公式的推导方法和公式的灵活运用.

  公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

二、说目标

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.

  过程与方法目标:

  经过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维本事和逆向思维的本事.

  情感与态度价值观:

  经过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.

三、说过程

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的构成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1.创设情境,提出问题

  在古印度,有个名叫西萨的`人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我能够满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的进取性.故事资料紧扣本节课的主题与重点.

  此时我问:同学们,你们明白西萨要的是多少粒小麦吗引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而立刻相减呢在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识构成过程的氛围,突破学生学习的障碍.同时,构成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

  2.师生互动,探究问题

  在肯定他们的思路后,我之后问:1,2,22,…,263是什么数列有何特征应归结为什么数学问题呢

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系(学生会发现,后一项都是前一项的2倍)

  探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,所以教学中应着力在这儿做文章,从而抓住培养学生的辩证思维本事的良好契机.

  经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.教师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

  3.类比联想,解决问题

  这时我再顺势引导学生将结论一般化,

  那里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自我探究公式,从而体验到学习的愉快和成就感.

  对不对那里的q能不能等于1等比数列中的公比能不能为1q=1时是什么数列此时sn=(那里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

  再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来(引导学生得出公式的另一形式)

  设计意图:经过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和理解,变为对知识的主动认识,从而进一步提高分析、类比和综合的本事.这一环节十分重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

  4.讨论交流,延伸拓展

数学说课稿 篇5

  一、说教材

  《解决问题》是人民教育出版社出版的小学数学第十一册第二单元的内容。这一部分主要是解决已知一个数的几分之几是多少,求这个数的分数除法应用题,教材借助比体重的活动,为学生创设问题情境。分数除法运用问题历来是教学中的难点,尤其是在分数乘除法混合问题时,学生难以判断使用乘法还是除法,因此我在教学时,充分利用主题图,让学生大胆地提出问题,鼓励学生解决问题。

二、说教学目标

  1、、理解已知一个数几分之几是多少,求这个数的应用题的结构特征,能用方程或算术方法解答这类题。

  2、通过结合具体情境,借助线段图小组合作等方法,提高学生分析问题解决问题的能力。

  3、进一步渗透转化的数学思想。

三、说教学重难点

  教学重点:

  通过分析比较,找出分数乘除法应用题的区别和联系,掌握解决问题的规律。

  教学难点:

  运用分数除法解决实际问题。

四、说教学

  说教学思路:

  本节内容是在学生掌握了分数乘除法的基础上进行教学的,所以在导入环节我安排了分数乘法应用题,帮助学生回忆解决方法,并且借助线段图帮助解决,为教学新知识打下基础。然后改变复习题的条件,让学生借助复习题,小组研究解决方法,并引导学生找到等量关系是,引导学生列方程解决问题。学生很容易找到关系式,并且列出方程,解答后一定要检验结果是否正确。然后归纳解题方法,举一反三,试着解决第二个问题,小组里交流,使学生知道,解决已知一个数的几分之几是多少,求这个数,用方程解决比较简便。然后通过适当的练习题加以巩固,学生基本掌握的比较好。

上一篇:关于大班数学说课稿模板合集十篇下一篇:实用的生物说课稿范文集锦五篇