《直线与圆的位置关系》评课稿

2020-06-18稿件

  一、课堂教学回顾

  薛老师执教的高三文科复习课:《直线与圆的位置关系》,首先从一个引例出发,让学生尝试作图和验证,得出知识要点,继而在此基础上继续研究直线方程和轨迹等问题。例题只有一个,但小题很多,题题递进,环环相扣,在此环节上教师以学生训练为主,教师讲授和引导为辅,共同完成本节课的整体教学内容。

  二、课堂特色分析

  我听了薛老师的这节课认为本节课设计高度重视学生的主动参与、亲自操作,让学生从中去体验学习知识的过程,同时,也注重培养学生的自主学习能力和创新意识。整体看来这节课的优点很多,很值得我去学习。

  总结起来,大概有以下几个特点。

  (一)注重一个“渗透”——德育渗透

  在数学教学中,我们常常把德育教育与辩证唯物主义、爱国主义情怀联系在一起,借助古今中外数学史不惜把数学课上成政治课,却成为一堂蹩脚的课。其实,通过数学问题的发生和解决过程的教学,培养与锻炼学生知难而进的`坚强意志,败而不馁的心理素质,一丝不苟的学习品质,勤于思考的良好学风,勇于探索的创新精神,实事求是的科学态度,这也是是德育教育,更是数学本质上的德育教育。本课薛老师把这种德育教育渗透到教学的每一个环节,力求“润物细无声”。当学生解题遇到困难时,教师能给予耐心的引导。但,在课堂上,处理第(3)小题第二问时,有一名男生利用圆的定义很巧妙地给出了轨迹方程,薛老师可能没有很好地把握表扬的机会,而是询问学生有否最后算出答案,显得有些匆促。

  (二)坚持两个“原则”

  1、例题设计注重分层教学,坚持面向全体学生的原则。

  题目母体来源于学生现有教辅书《全品》,却在原题基础上进行了分层递进的改编,让不同的学生都有不同的收获。以学生的最近发展区为指向,充分尊重了学生现有的认知水平和个性差异,为不同层次的学生采用适合自己个性的方法进行学习创造了条件。

  2、教学过程授人以渔,坚持以学生发展为本的原则。

  让学生深刻经历:通过作图和求解基本例题回忆知识结构——通过尝试深化知识内容——通过递进扩展知识联系,教会学生研究的方法,而不是结果。

  (三)落实三个“容量”——知识量、活动量和思维量

  本节课所选内容以解析几何为平台,却可以集函数性质、图像、方程、不等式于一体,例题只有一题,但以此展开的小题却逐层递进和推进,容量大,难度高。可喜的是,薛老师通过合理运用现代技术和整合例题,成功地丰富了知识量;加强探索与过程教学,有效地落实了思维量;突出学生板演与探究教学,巧妙地增加了活动量,值得借鉴。

  (四)实现四个“转变”——学生角色从被动到主动;教师角色从传授到指导;学习理念从封闭到开放;学习形式从单一到多元。

  本课初步实现了“四个转变”是由于采用了探究式的教学策略,为学生提供开放性的学习内容、开放性的教育资源和开放性的教学形式。特别是向学生提供了更多的机会和时间,让学生尝试和探究、合作和交流、归纳和总结,最大限度地提高学生学习活动的自由度,促使学生思维空间的充分开放。

  (五)培养五种“能力”——应用能力、探究能力、反思与提问能力、交流合作能力和创新能力。

  本课从引入开始,充分放手让学生动脑、动口、动手,使研究问题得以逐个深入,难点得以一个个突破,能力得以一点点培养。事实上,解析几何复习课,重在数形结合,重在几何性质,重在静动结合,课堂贵在“生动”,所谓“生动”,是指“生”出“动”。要树立生本意识,立足学生“可动”;设置问题探究,引领学生“会动”;课前充分预设,不怕学生“乱动”;及时表扬肯定,激励学生“愿动”。

  三、值得商榷的地方

  但是我认为这节课也有一些值得探讨的问题:

  第一、老师讲的还是太多。听说杜郎口中学要求老师每节课讲课时间不能超过10分钟,否则是不合格的。一堂课,就只有40分钟,老师讲多了,学生自然就参与少了。这样的后果就会导致学生具体体验时间不够,同时规范操作和演练也不够。

  第二、在学生回答引入题时,假设直线方程时,学生没有考虑到斜率是否存在的情况,这时,老师没有及时进行补充和纠正。一个很明显的后果就是导致在(2)问的板演中,学生解答出错。

  第三,学生板演时没有很好地结合图像进行解题,这时,老师应该要适时引导学生作好草图。凸显解题时要从宏观到微观,从直觉到精确,从定性到定量分析。

  第四,本节课最大的特色就是很好的整合了例题,以一题可以扫遍所有的直线与圆的有关知识点,这是一种复习习惯和策略。教师在这个点上应该要向学生强调,引导学生今后复习也应该有意识地进行整合和提升,做到既“重复”,又“学习”,这才是复习。

  第五,本节课还有一个线索,就是前面的题目基本上能借助几何性质进行解题,而最后一问必须采用解析几何的思路,就是用代数的方法解题,这实际上要求老师要进行总结,告诉学生直线与圆的位置关系解题时,先考虑几何性质,再借助代数方法解决,这不仅是一般的解题思路,也为后面的直线与椭圆的位置关系埋下伏笔。

  总之,这是一堂原生态的高三复习课,让我获益匪浅。以上仅是一家之言,在此权当抛砖引玉,谢谢大家!

【《直线与圆的位置关系》评课稿】相关文章:

1.关于直线与圆的位置关系的评课稿

2.《直线射线和角》评课稿

3.《直线,射线,线段》评课稿

4.直线射线线段评课稿

5.《圆的面积》评课稿

6.圆的面积评课稿

7.《圆的认识》教学评课稿

8.《圆的认识》的评课稿

上一篇:《探究凸透镜成像》评课稿范文下一篇:《直线射线和角》评课稿