高中数学必修二知识点总结

2020-08-02总结

高中数学必修二知识点总结

  高考马上要到了!让小编来为您整理以下高中数学必修2知识点吧!上公文站,发现学习。

  高中数学必修二知识点

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即 .斜率反映直线与轴的倾斜程度.

  当 时, ; 当 时, ; 当 时, 不存在.

  ②过两点的直线的斜率公式:

  注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

  (3)直线方程

  ①点斜式: 直线斜率k,且过点

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

  当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

  ②斜截式: ,直线斜率为k,直线在y轴上的截距为b

  ③两点式: ( )直线两点 ,

  ④截矩式:

  其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 .

  ⑤一般式: (A,B不全为0)

  注意:各式的适用范围 特殊的方程如:

  平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);

  (5)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

  (二)垂直直线系

  垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

  (三)过定点的直线系

  (ⅰ)斜率为k的直线系: ,直线过定点 ;

  (ⅱ)过两条直线 , 的交点的直线系方程为

  ( 为参数),其中直线 不在直线系中.

  (6)两直线平行与垂直

  当 , 时,

  ;

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

  (7)两条直线的交点

  相交

  交点坐标即方程组 的一组解.

  方程组无解 ; 方程组有无数解 与 重合

  (8)两点间距离公式:设 是平面直角坐标系中的两个点,

  则

  (9)点到直线距离公式:一点 到直线 的距离

  (10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解.

  二、圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

  2、圆的方程

  (1)标准方程 ,圆心 ,半径为r;

  (2)一般方程

  当 时,方程表示圆,此时圆心为 ,半径为

  当 时,表示一个点; 当 时,方程不表示任何图形.

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

  3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;

  (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

  (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

  设圆 ,

  两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

  当 时两圆外离,此时有公切线四条;

  当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当 时,两圆内切,连心线经过切点,只有一条公切线;

  当 时,两圆内含; 当 时,为同心圆.

  注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

  圆的辅助线一般为连圆心与切线或者连圆心与弦中点

  三、立体几何初步

上一篇:识字学词第一单元教案下一篇:高二政治必修三教学计划