有的老师为了更好地向学生讲述函数的奇偶性,提前准备了说课课件,一起去看看吧!
课题:1.3.2函数的奇偶性
一、三维目标:
知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1.复习在初中学习的轴对称图形和中心对称图形的定义:
2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。
五、学习过程:
函数的奇偶性:
(1)对于函数 ,其定义域关于原点对称:
如果______________________________________,那么函数 为奇函数;
如果______________________________________,那么函数 为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。
六、达标训练:
A1、判断下列函数的.奇偶性。
(1)f(x)=x4; (2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函数 ( )是偶函数,则b=___________ .
B3、已知 ,其中 为常数,若 ,则
_______ .
B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )
(A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对
B5、如果定义在区间 上的函数 为奇函数,则 =_____ .
C6、若函数 是定义在R上的奇函数,且当 时, ,那么当
时, =_______ .
D7、设 是 上的奇函数, ,当 时, ,则 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定义在 上的奇函数 ,则常数 ____ , _____ .
七、学习小结:
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
补充练习题:
1.下列各图中,不能是函数f(x)图象的是( )
解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.
2.若f(1x)=11+x,则f(x)等于( )
A.11+x(x≠-1) B.1+xx(x≠0)
C.x1+x(x≠0且x≠-1) D.1+x(x≠-1)
解析:选C.f(1x)=11+x=1x1+1x(x≠0),
∴f(t)=t1+t(t≠0且t≠-1),
∴f(x)=x1+x(x≠0且x≠-1).
3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=( )
A.3x+2 B.3x-2
C.2x+3 D.2x-3
解析:选B.设f(x)=kx+b(k≠0),
∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,
∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.
【函数的奇偶性说课课件】相关文章:
6.函数奇偶性课件
7.高一函数的课件