一元一次不等式教案

2020-06-22教案

  教学目标

  1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.

  2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.

  3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.

  教学重点?? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题

  教学难点?? 审题,根据实际问题列出不等式.

  例题?? 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??

  解:设累计购物x元,根据题意得

  (1)当0 < x≤50时,到甲、乙两商场购物花费一样;

  (2)当50< x≤100时,到乙商场购物花费少;

  (3)当x > 100时,到甲商场的花费为100+0.9(x-100) , 到乙商场的花费为50+0.95(x-50)则

  50+0.95(x-50) > 100+0.9(x-100),解之得x >150

  50+0.95(x-50) < 100+0.9(x-100),解之得x < 150

  50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150

  答:当0 < x≤50时,到甲、乙两商场购物花费一样;

  当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。

  变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的'80%收费。问:选择哪家公司较好?

  解:设购买午餐x份,每份报价为“1”,根据题意得

  0.9x > 100+0.8(x-100),解之得x >200

  0.9x < 100+0.8(x-100),解之得x < 200

  0.9x = 100+0.8(x-100),解之得x = 200

  答:当x>200时,选乙公司较好;当0 < x <200时,选甲公司较好;当x=200时,两公司实际收费相同。

  作业

  1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种方案更合算?

  2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人200元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?

【一元一次不等式教案】相关文章:

1.《一元一次不等式组》教案设计

2.一元一次不等式组的教学反思

3.人教版《一元一次不等式》教学反思

4.一元一次不等式组教学反思

5.《一元一次不等式》说课稿

6.一元一次不等式的应用说课稿

7.《一元一次不等式》教学反思范文

8.解一元一次不等式的教学反思

上一篇:解一元一次不等式教学反思课后反思下一篇:《一元一次不等式、一元一次方程、一次函数》的说课稿