数学教案-合比性质和等比性质例

2020-07-03教案

数学教案-合比性质和等比性质例

  教学课题:合比性质和等比性质

  教学目标:

  1、掌握合比性质的等比性质,并会用它们进行简单的比例变形

  2、会将合比性质、等比性质用于比例线段。

  3、提高学生类比联想、推广命题的能力。

  教学重、难点:

  熟练地、灵活地运用合比性质与等比性质。

  课前准备:

  小黑板、幻灯机及幻灯片。

  教学过程:

  一、复习引入:

  我们在前边学习了线段的比,比例的有关概念及性质,那么请同学们回忆

  1、什么叫线段的比?

  2、什么叫成比例线段?

  我们还学习了比例的基本性质,那么,除此之外,比例还有一些什么性质呢?

  这就是本节课我们将要研究的比例的合比性质与等比性质。(出示课题:合比性质与等比性质)

  那么,通过本节课的学习我们要达到一个什么样的要求呢?(出示小黑板)看学习目标1、2,(全班同学齐读)

  下边请同学们再回忆,我们在上一章学习的平等线等分线段定理是如何叙述的?(抽同学回答)

  请看幻灯(投影显示)

  二、(用特殊化方法)探索合比性质。

  1、复习,已知:一组平行线在直线l上截得的线段AB=BC=CD=DE=EF则由平行线等分线段定理可得一个结论:即AB=BC=CD=DE=EF。

  2、将上述结论改写成比例式,由此猜想得出结论,引导学生思考:如果设在l上截得的每一份为k,问AD=?DF=?

  ?

  又设在l1上截得的一等份为m,问AD=?DF=?

  ?

  观察以上分析,可得出一个什么样的结论?

  又观察 与 有什么关系?对于一般的比例

  式都有这一个关系吗?请猜一猜。

  猜想:学生口述(同学间可相互讨论、研究)

  教师根据学生口述、写出:

  如果

  3、证明猜想,得出合比性质,

  我们这个猜想,是否正确呢?

  (1)启发学生观察,已知与未知的关系,寻找证明思路,证法一:(设比法)

  设

  ∵

  ∴

  证法二、(利用等比性质2)

  ∵ ∴ ∴

  (2)类比联想,得到分比性质。

  如果

  学生自由讨论,可仿上边自己证明结论。

  在今后,这两种情形都叫合比性质,即

  如果

  (3)理解合比性质的内容,师生一起用文字语言叙述。

  4、类比联想,将合比性质推广。

  在合比性质的表达式中,

  (1)比例的二、四项保持不变,

  (2)比例的前后磺对应求和或差,作为新比例式的第一、三比例项。

  由此,可作出以下类比联想,并使用比例的基本性质进行证明。

  猜想一,(教师引导) 如果

  二 …… 如果

  三 …… 如果 等等。

  对这几个猜想出来的问题,其基本思考方法有两种:

  (1)通过一定的方法,将它们变形利用合比性质的结果,证明时,可灵活运用以下变形方法。

  ①同时交换比例的内或外项,(更比)

  如果

  ②同时交换比例的前后项,(反比)

  如果

  比如证明猜想三,如果

  (2)对原合比性质的证明方法进行类比、联想来进行证明(设比法)

  三、利用合比性质来证明等比性质的特例,并推广。

  1、练习(投影显示)

  证明:

  2、观察上述练习的两个结论,并对一般情况作出猜想,对练习中相等的比值的`比个数进行推广。

  如果

  3、利用设比法进行证明,得出等比性质,同学们自己练习,后与教材P20对比。

  4、强调证明方法“设比法”。

  设几个相等的比值为k,用它们表示出每个比的前项(或后项)利用代数运算证明比例问题,这种思想方法在比例问题中经常用到。

  四、简单运用(出示小黑板)

  (1)已知: ,

  (2)已知:

  (3)已知: =

  注意:①合比性质与等比性质的证明方法和结论都很重要,都可用来证明有关比例式的问题。如第三题一问

  解法1、

  解法2、

  第二问可用解法2。

  ② 还常以另一种形式出现,即x:y:z=4:3:6但此时不能设 。

  五、师生共同小结,看书完成P203练习

  1、合比性质,等比性质及常用变形,尤其注意等比性质的使用条件。

  2、证明两个性质时所用到的“设比法”的证明方法。

  3、类比联想,推广命题,由特殊到一般,再进行证明的方法。

  六、练习:(1)已知 求 的值;

  (2)已知 求 的值;

  (3)已知 求 的值;

  (4)已知 试求 的值。

  由(4)题思考通过作第(4)题得出结论,结合前边所学内容猜想,你能得出什么结论,并试证之。

  板书设计:

  合比性质与等比性质

  1、合比性质: 2、等比性质: 小黑板①②③

【数学教案-合比性质和等比性质例】相关文章:

1.求职信的性质和功能

2.物理性质与化学性质教案

3.《菱形性质》教学反思

4.性质的造句

5.盐的性质教案

6.棱锥的概念和性质说课稿

7.《圆的基本概念和性质》教案

8.对法官的性质和功能的反思论文

上一篇:余弦函数图象教学设计下一篇:高一数学不等式的基本性质教学计划