非参数统计分析在多样本研究中的应用论文
一、研究背景
当今经济研究领域,运用传统的参数统计进行实证分析非常广泛。然而,在现实生活中,传统参数统计方法对总体分布的假定常常难以满足,比如数据并非来自所假定的分布,或者数据根本不是来自一个总体,又或者数据因为种种原因被严重污染等。这样,假定总体分布的情况下进行推断的做法就可能产生错误的结论,影响决策。为此,人们希望在不假定总体分布的情况下,尽量从数据本身来获得所需要的信息,这就是非参数统计的宗旨。
二、实证分析
以小白鼠为对象研究正常肝核糖核酸(RNA)对癌细胞的生物作用,试验分别为对照组(生理盐水),水层RNA组和酚层RNA组,分别用此3种不同处理方法诱导肝癌细胞的果糖二磷酸酯(FDP酶)活力,数据如表1所示.
3种不同处理的诱导结果
处理方法诱导结果
对照组2.792.693.113.471.772.442.832.52
水层RNA组3.833.154.703.972.032.873.655.09
酚层RNA组5.413.474.924.072.183.133.774.26
从上表可以看出,对照组的诱导的平均FDP酶活力最小,水层RNA组次之,酚层RNA组的最大。因此可以初步认为,3种诱导作用的效果有显著差异。
(二)、正态性检验
对样本做假设检验则首先必须知道总体服从的分布,本文针对3个总体分别进行正态性检验,原假设为H0:样本所来自的总体分布服从正态分布,备择假设为H1:样本所来自的总体分布不服从正态分布。具体检验结果如下:
显然,通过Kolmogorov-Smirnov检验可知,在给定的显著性水平0.05的条件之下,在3个总体所得P值均小于α,故拒绝原假设,可以认为出这3个总体均不服从正态分布。且从现阶段所知的分布来看,无法断定其到底属于何种分布,故采用非参数方法对该问题进行统计分析。
(三)、尺度参数检验
本文中尺度参数的检验采取Mood检验。原假设X和Y同分布,即H0:b=1,备择假设H1:b≠1。通过R软件检验结果如下:
Z检验统计量的值P值
对照组与水层RNA组-1.39560.1628
对照组与酚层RNA组-1.43490.1513
水层RNA组与酚层RNA组-0.410.6818
表4
结果显示,对于分布函数形状的检验,在给定的显著性水平0.05的条件之下,对照组与水层RNA组、对照组与酚层RNA组和水层RNA组与酚层RNA组的尺度参数检验均全部通过,接受原假设。即3个总体的分布函数(以及密度函数)的形状完全相同,若有不同仅有可能的是位置参数不同。
(四)、位置参数检验
1、Kruskal-Wallis检验
由于本文样本为3个独立同分布的总体,因此对于位置参数的检验采取Kruskal-Wallis检验。根据题意有,原假设H0:试验中3种诱导作用的效果无显著差异,备择假设H1:试验中3种诱导作用的效果有显著差异。结果显示p=0.01895,故在给定的显著性水平α=0.05条件之下,拒绝原假设。
2、Wilcoxon秩和检验
为了进一步检验3中诱导作用中产生显著性差异的是哪一种,本文对其进行两两的Wilcoxon秩和检验。其中,原假设H0:试验中某两种诱导作用的效果无显著差异,备择假设H1:试验中某两种诱导作用的效果有显著差异。通过R软件编程检验,结果如表5所示。
W秩和检验统计量的值P值
对照组与水层RNA组100.02067
对照组与酚层RNA组8.50.01564
水层RNA组与酚层RNA组270.6454
结果显示,在给定的显著性水平0.05的条件之下,对照组与水层RNA组、对照组与酚层RNA组的位置参数检验没有通过,因此拒绝原假设,认为对照组与水层RNA组、对照组与酚层RNA组的诱导作用效果有显著性差异。但是水层RNA组与酚层RNA组的Wilcoxon检验结果显示,在给定的显著性水平0.05的条件之下,不能拒绝原假设,即没有证据表明水层RNA组与酚层RNA组的`诱导作用效果之间存在显著性差异。
三、结论
通过本文可以看出,在生物医学领域,非参数统计具有非常广泛的应用前景。非参数统计方法不仅可以像参数统计方法一样用于处理定距、定比数据,更适合处理定类、定序数据。参数方法对数据要求较多,而非参数统计方法则不同,研究的出发点是假定研究总体的理论分布是未知的,是一个待检验的假设,实际应用中这种问题是非常普遍的。非参数统计方法减少了实际应用中对假设条件的依赖,进而使得对多样本问题的研究更加客观,不受样本分布形式限制的,应用范围、发生模型错误的可能性较小,有较大的稳定性,同时方法简便易行,直观性强,易于接受和理解。此外,在本文的实证研究中,所有检验均为应用R软件编程运算,因此R软件具有实现比较非参数统计分析的强大功能。
【非参数统计分析在多样本研究中的应用论文】相关文章:
2.非合作博弈论论文
8.电子商务论文样本