勾股定理的逆定理课程计划

2020-07-03实用文

勾股定理的逆定理课程计划范文

  一、教学目标

  1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。

  2.灵活应用勾股定理及逆定理解综合题。

  3.进一步加深性质定理与判定定理之间关系的认识。

  二、重点、难点

  1.重点:利用勾股定理及逆定理解综合题。

  2.难点:利用勾股定理及逆定理解综合题。

  三、例题的'意图分析

  例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。

  例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE就是平行线间距离。

  例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。

  四、课堂引入

  勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。

  五、例习题分析

  例1(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。

  试判断△ABC的形状。

  分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0,则都为0;⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。

  例2(补充)已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。

【勾股定理的逆定理课程计划范文】相关文章:

1.勾股定理的逆定理课程计划

2.勾股定理的逆定理说课稿

3.《勾股定理逆定理》的教学反思

4.《勾股定理的逆定理》教学反思

5.《勾股定理的逆定理》说课稿

6.勾股定理的逆定理数学教案范文

7.《勾股定理的逆定理》教学反思范文

8.勾股定理的逆定理教学设计

上一篇:正切和余切教案设计下一篇:学生会部长的工作计划