《商不变的规律》教学反思

2020-12-30邀请函

《商不变的规律》教学反思范文(精选6篇)

  身为一名人民教师,我们的任务之一就是教学,借助教学反思我们可以拓展自己的教学方式,优秀的教学反思都具备一些什么特点呢?以下是小编收集整理的《商不变的规律》教学反思范文(精选6篇),仅供参考,希望能够帮助到大家。

  《商不变的规律》教学反思1

  今天的课上得很不顺利,主要是表达方面的问题。

  我从复习积的变化规律入手,再引出研究除法中的一些规律。我没有采用课本上的例题,而是先让学生口算100÷50,然后让学生依据这道题,写出一些相关的除法算式,我把学生说的算式写成了两列,一列是被除数和除数同时乘相同的数,另一列是同时除以相同的数的,然后让学生结合每道题观察与100÷50有何变化,只有个别学生愿意表达自己的看法,我估计其他学生不会组织自己的语言,好不容易说出来了,然后让学生比较与书本概括的有何不同时,都能发现“0除外”,但是问及其为什么加上这句话时就无语了,看来学生的基础知识很不扎实。

  课本“想想做做”的四道题只完成了三道,关键是前面让学生说说发现的规律所用的时间太多了。总的感觉,今天的课死气沉沉的,只有几个同学在发言,即使有些同学发言了,也说不完整,是不是平时我让学生练习表达得不够,指导学生表达的方法是否要改进,这个值得我去好好思考的。

  《商不变的规律》教学反思2

  本节课的重点是理解和运用商不变的规律,为后面利用这一规律进行简便计算打好基础.教材上很简单,就一个例题从中得出结论:被除数和除数同时乘(或除以)同一个数(0除外),商不变。那如何引导学生主动去发现规律,在理解的基础上应用,是本课的难点.在课堂上,我先出示100÷50=2,再让学生根据这个算式,你还能写出也等于2的算式吗?把学生写的算式分两块板书出来.再让学生观察这些算式与第一道有什么联系?

  一开始,学生用语言表达自己所发现的规律时不是太好.我再适当引导了一下,这样学生观察变得有序了,思考也有了方向.通进学生再观察,再思考,再交流,在这个过程中,促进了学生主动参与的热情.大部分学生初步得出了商不变的规律后.我追问了一句:那么,在其他除法式题中是否也成立呢?于是再出示书上的例题让学生用计算器验证一下.最后进一步完善发现的规律,让学生体验数学问题结论的严谨性.后面的练习,大部分学生能达到灵活运用.

  《商不变的规律》教学反思3

  本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。

  一、巧妙设计激发兴趣

  上课伊始,我带来了学生爱吃的糖,一下吸引了孩子的注意力,孩子们都想分到更多的糖,都选择了6000块糖,当翻牌儿后,有的孩子认为6000块多,有的孩子认为300人比3000人少,当孩子们细心观察后发现其实每一种分法的结果是一样多的。一个巧妙的设计不但激发了孩子们的学习热情,同时也引发了孩子们的思考,为接下来的学习奠定基础。

  二、合作学习教师指导

  孩子们发现自己中计了,我疑惑地问:“你是怎么知道的?”一位同学迫不及待地说:“6÷3=2、60÷30=2、600÷300=2、600÷300=2”。就这样,本节课研究的四个算式让孩子们说了出来。我接着提出问题:“观察这几个算式,你发现了什么?”我热情地鼓励同学们认真观察,开动脑筋,团结合作,一定可以找到奥秘所在。在老师的引导下,学生说出了这些算式的变化过程,这时,老师追问:“那么要想商不变,只能乘或除以10、100、1000吗?”同学们心领神会,拿起笔,用不同的算式开始了验证。验证之后,在大家不断的补充、修改、完善下,同学们自己总结了商不变的规律。

  在这个过程中,针对学生的质疑,我并没有亲自解释,而是引起同学之间的争论,让同学自己发现、探讨,自己来解决疑问,在这种不断的提问、解答过程中,更加深了对商不变性质的进一步理解,更增加了学生之间高水平思维的沟通,让学生体会到课堂是大家学习探讨的天地,在这样的氛围里学习,孩子们是愉快的。

  三、反馈练习深化认识

  同学们掌握了商不变性质,我又和同学们一起进入了有趣的练习。学生最感兴趣的是“找朋友”这个环节,后来因为时间关系,孩子们没玩尽性,我打算在练习课上再带孩子们玩一玩,从而加深对商不变规律的掌握。

  《商不变的规律》教学反思4

  今天的教学比较失败,原因在于没有深入的研究教材,没有把握学生的思维脉搏。只是按照教案执行下去,因此,在教学结束后,留下不少的遗憾。回顾一下,主要有这两个地方没有处理好:

  一、 简便算法中商的处理不够到位:

  课堂结束后,与学生交流的过程中了解到,有的学生对今天的学习内容有一些糊涂的地方没有搞清。例如900÷50,竖式上900个位上的0去掉后,为什么不要在商的个位上写“0”了。

  1、分析原因:

  没有沟通900÷50与90÷5之间的联系,没有充分让学生思考为什么商的个位上不用写0的原因。

  2、亡羊补牢:

  应该通过思考、组织讨论这个问题达成共识:900÷50根据商不变的规律,它的商与90÷5的商相同,所以去掉0后实际上算的是90÷5的商。因此900个位上的0上面不需要再商0了。

  二、 简便算法中余数的处理不够到位:

  在教学900÷40时,因为预设不充分,在学生出现900÷40的竖式中出现了余数写成20时,没有充分的探究这样写是否正确,而一味考虑学生可能会忘记在横式的余数中忘记写0而作了错误的引导。结果课后有学生表示疑惑,既然40当作4来除,那么余数如果是20的话不是比除数大了吗?

  亡羊补牢:在上面分析商末尾是否添0的基础上引导学生分析此题竖式最后的余数应该写几,但是横式上的余数应该写几,明确规范的书写方法,进行强化。

  《商不变的`规律》教学反思5

  一、直入主题

  最初的教学设计有一个“猴王分桃”的教学情境,但我认为教学情境比较老化,同时情境的创设把学生放到一个的学习活动目标不是很明确的位置,所设计的问题也同样显得“泛”而不“精”,导致学生的回答漫无边际,难以实质性地触到商不变时被除数和除数的变化规律上去;因此,决定将“猴王分桃”的故事放入发散思维的环节中,直接从计算引入课题。

  这样的引入,学生能直接切入主题,并有足够的时间让学生观察、思考和发现隐含在算式中的变化规律;同时,在学生观察、发现被除数和除数的变化规律时,不对学生的发现加以限制,而是及时引导学生验证、反思自己所发现的规律,肯定自己的成功,发现自己的不足,充分体现出数学教学的核心,实现培养学生的观察、思维能力和探究意识,课堂教学效率明显得到提高。

  二、引导总结

  在总结规律的时候,不是急于总结归纳,而是让学生根据所发现的规律,写出一组商不变的除法算式,让学生在写算式的过程中感悟规律的真正含义和思考怎样把规律所蕴涵的内容用自己的语言表达出来。同时,学生写算式并没有泛泛而写,而是老师写出一个算式,让学生在此基础上进行变化,突出了教学重点是让学生掌握变化的规律,又能更好地在汇报活动中帮助学生思考和理解,同样体现出教师的引导作用。

  三、渗透思想

  整个教学活动,贯穿着以知识与技能目标为载体,让学生在不断的观察、思考,交流与讨论的学习过程中,掌握观察——思考——猜想——验证——应用的探究方法以及数学里的不完全归纳法等数学方法,并让学生在和谐、民主、平等的学习活动中获得成功的学习体验,感受探究与发现的快乐,增加学习数学的兴趣和信心。

  《商不变的规律》教学反思6

  《商不变的性质》是人教版四年级上册第五单元的内容,本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。

  整节课下来没有能达到自己预设的教学目标。本节课我是想让学生通过计算两组题目,然后通过观察和思考发现两组算式中的规律,但在实际教学中删了一组算式,直接通过孙悟空分桃的故事导入学习内容。这个例子恰好是个特殊的例子,即相邻算式中的被除数和除数是扩大10倍或缩小10倍,因此多数学生得到的规律是:从上往下看被除数和除数同时乘10,从下往上看被除数和除数同时除以10(在这里我希望学生们得到的结论是被除数和除数同时乘或除以一个相同的数),虽然,我让学生去比较了第一个和第三个式子,但是学生的思维好像定势了,这堂课开放的不够,在某些环节上没有足够的时间让学生去体验和反思。主要是在第一部分我举的例子少,学生感悟得不深刻,因此有些学生并没有理解商不变的规律。

  在学生对商不变规律还是似懂非懂的前提下,就让学生自己举例,显得太过勉强。虽然一部分学生能举出例子来加以验证,能够得出:被除数与除数都要扩大或缩小相同的倍数,商才能不变。但因为缺少实例的支撑,得出的结论就显得有点苍白,而且对学生印象不够深刻。因为害怕学生弄不懂就反复讲解,反复强调,结果让已经弄懂的学生反而迷惑了。时间都浪费在前面的讲解上,后面没有时间练习,学生没有得到深入理解商不变规律的机会。

  通过对这节课的设计与教学让我体会到作为教师在吃透教材的同时,要多从学生的角度出发,以他们的兴趣水平、理解能力为出发点去精心安排教学内容、设计教学方法,才能使学生少走歪路,学得容易、学得轻松、学得牢固,真正达到减负增效的目的。

  总而言之,我认为这节课没有达到自己的预期目标,效果不是太好。

【《商不变的规律》教学反思范文(精选6篇)】相关文章:

1.数学《商不变的规律》教学反思

2.《商不变的规律》说课稿

3.《商不变的性质》数学教学反思

4.商不变的规律四年级数学教学反思

5.商不变规律数学教学反思

6.《商不变的性质》课堂教学反思

7.《找规律》的数学教学反思范文

8.找规律的数学教学反思

上一篇:四年级数学商不变性质教学反思下一篇:《商不变的规律》说课稿