椭圆及其标准方程教学反思范文

2020-06-18教学反思

  椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。

  在第一课时中我从书中的小实验出发给学生演示并重点讲解动点在运动的过程中始终保持不变的几何特征即到两个定点的距离之和为定值(绳长)并通过改变两个定点的距离让学生直观体会椭圆的圆扁度与定点距离的关系,并提出思考若绳长和定点的距离相等及大于绳长时动点的轨迹又是什么?随后通过对学生分组进行讨论及总结给出定义;我在此时结合图形强调这个定值一定要大于两个定点的距离的理由,随后提出坐标法的基本思想并带着学生回顾动点轨迹方程的一般求法然后提出问题:椭圆的方程是什么引入第二部分即标准方程的推导;在推导椭圆标准方程时重点讲清楚坐标系的建立过程,并让学生总结建系的方法及原则;在椭圆标准方程的推导过程中由于是带有两个根式的方程化简对于我们学校的学生来说基础比较弱可能从来没遇到过,因此主要通过我在黑板上的推导及演算让学生看清过程,掌握推导方法并及时对动点轨迹方程的一般求法步骤再次进行学习引导并进一步深入总结。

  得到椭圆标准方程后,让学生重点分析两个问题,第一个就是课本中的探究活动,让学生在图形中找到b的几何意义,并强调a>b>0;a>c>0b,c大小关系不确定;第二个就是提出方程的建立与坐标系有关,不同的坐标系方程是不同的,引出学生对焦点在y轴上的椭圆标准方程的推导产生兴趣,并自我完成推导过程,并通过分组讨论总结完成对椭圆标准方程推导。最后通过课本例1让学生初步体会椭圆定义及标准方程的应用。

  本节课的重点是椭圆的定义及标准方程的推导,难点是标准方程推导过程中的建系过程和方程化简过程。在椭圆定义的教学中我充分运用多媒体演示及课堂学生的动手试验突出椭圆定义中到两个定点的距离为什么要大于两个定点的距离;另一方面从图形出发让学生注意三角形两边之和大于第三边也可以解释;在标准方程建立的过程中建系是难点,学生很难入手,在这里我充分引导学生建系的目的是用坐标表示点,用方程表示曲线,引导学生关注两个定点的坐标及距离公式好表示,并强调建系要关注椭圆的对称性。在推导完方程后通过不同的坐标系让学生观察分析方程的推导变化进一步体会坐标系建立过程中关注点的坐标及曲线的对称性的重要性。

  在方程化简过程中我同过课堂上学生自主推导焦点在y轴上的标准方程进一步让学生自己体会化简的过程和运算技巧,让学生能初步的解决类似问题,本节课我采取做,讲,练结合,师生之间有充分互动的过程,学生能从做实验,听讲解,自主练习的过程中体会椭圆标准方程的获得过程,能够从中体会发现和发明的乐趣并对知识的产生过程有很深入的体会,真正的做到了学生为主体,教师为主导的教学理念。

上一篇:椭圆及其标准方程的教学设计下一篇:《椭圆的标准方程》的说课稿