本节课的目标是会推导公式(a+b)(a-b)=a2-b2,并能简单计算。上一节学了多项式×多项式的运算法则,因此在回顾旧知识利用法则来计算(a+2)(a-2),(2x-y)(2x+y)的同时直接引入本节课的内容,问学生上面的两个多项式乘多项式中各个式有什么特征?结果又有什么特征,学生的回答跟预测的差不多看是能看出来但要把他描述出来有点困难,因此指导并和学生一起用语言描述:二项式乘二项式中其中一项相同,另一项互为相反数的积等于(自己不回答学生回答)两项的平方差,这时就问对吗?学生很快就能反映过来,更能加深印象结果应该等于相同项的平方—互为相反数项的平方。继续探究同类型的计算:(x+1)(x-1);(m+2)(m-2);(2x+1)(2x-1),都能找到此规律,让学生归纳出结论(用式子),因为从特殊到一般的归纳学生比较擅长,得出结论是:(a+b)(a-b)=a2-b2,因为结果是平方差所以把公式的名称叫为平方差公式。接着那学生尝试着用文字归纳,为了归纳的方便把连接两项的符号看成运算符号,该怎么描述此规律:两项的和乘两项的差(提示学生这两项跟前面的两项是一样的)等于这两项的平方差,接着几个二项式乘二项式的练习让学生板演,目的是看看学生的易错点并一起归纳怎样做不容易出错及应注意那些事项:利用平方公式计算,首先观察是否符合公式的特点,用不同的符号把找到相同的项和相反的项表示出来,并把它写成公式的形式,先不要急着答案出来。让学生比较用法则计算跟用公式计算的区别,平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,但运用公式计算一定要看是否符合公式的特征,严格要求不能乱套公式。
为了让学生理解公式的几何背景,通过拼图计算,既可以直观说明公式的几何特征,又可以体现数形结合。