《比例尺的应用》的教学设计
《比例尺的应用》的教学设计
教学目标
1、知识与技能目标:联系学生的生活实际,理解比例尺的意义。根据比例尺的意义解决实际问题。
2、过程与方法目标:在师生、生生的交流活动中,体会比例尺在实际生活中的运用。结合实际,经历提出问题、分析问题、解决问题的过程,初步学会数学的思维方式,培养问题意识和解决问题的能力。
3、情感态度目标:让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到比例尺的实用性和科学的探索方法,培养学生读图、用图以及小组合作的意识,增强学好数学的信心。
教学重点:
能按给定的比例尺求相应的实际距离。
教学难点:
比例尺在生活实际中的运用
教学过程:
一、复习引入:
二、1 、复习比例尺的意义:
刚才老师了解到同学们的五一安排非常丰富,其实在我们学校周围也有许多美丽的景点。老师给同学们带来了一幅地图,你能看到什么?还能看到什么?(观察的非常细致)比例尺1:10000你是怎么理解的?你还了解比例尺的哪些知识?
预设生1:图上一厘米表示实际中的一万厘米,实际距离是图上距离的一万倍。
2:图上距离/实际距离=比例尺。(板书)
3:同样的知道(比例尺)、(图上距离))我们就可以求(实际距离) 那么知道 (比例尺)、(实际距离)我们就可以求(图上距离) 也就是说知道其中的两个量,我们就可以求出第三个量.()
2、揭示课题。
大家对比例尺有了深刻的了解,其实比例尺在我们生活中有着广泛的应用。今天,我们就一起来研究比例尺的应用。(贴出课题)
二.教学求实际距离.
1、求东门小学到铁塔寺的实际距离。
下面,我们就带上比例尺,进行一次地图上的旅行吧。现在我们从东门小学出发到铁塔寺
(1)出示课件:
(2)仔细观察所以信息,你能提出哪些数学问题?
(3)预设一:生提:图上距离是多少? (测量)
(4)预设二:从东门小学到铁塔寺实际距离大约多少米?(评:真了不起,这个问题很有价值,我们可以共同研究一下!)
(5)仔细观察所有信息与问题, 要求从东门小学到铁塔寺的实际距离,我们就必须先知道什么? 老师给同学们也提供了同样的地图,请你想一想、量一量、算一算,求出从我们东门小学到铁塔寺的实际距离。
生做,师巡视
汇报交流:
师:谁愿意来说说你的想法?
方法一:方程。
说说你为什么这样列式?
使用这种方法还有什么要提醒大家的吗?
刚才我们根据比例尺的数量关系,利用比例尺的意义直接解决了这个问题。
其他同学还有不同方法吗?
方法二:
生:41/10000求出的是实际距离。我们组是这样想的:因为图上距离∶实际距离=比例尺,在这里图上距离是比的前项,相当于除法中的被除数;实际距离是比的后项,相当于除法中的除数;比例尺相当于图上距离和实际距离的商。而除数=被除数商,所以可以推出实际距离=图上距离比例尺,我们组就是根据这种关系求实际距离的。
这种方法也不错。
方法三:
我们组是这样想的:根据比例尺1∶10000推出实际距离是图上距离的10000倍,所以从学校到铁塔寺的实际距离可用410000求出,求出结果之后,因为单位不统一,所以还要把实际距离的单位转化为米,随即问:怎么列式?(教师板书)
2、比较几种算法。
同学们,很会观察,很会思考。从不同角度,想出多种方法解决了同一个问题。 这些方法中,你更欣赏哪一种?为什么?
教师小结:我们的数学就是那么奇妙,在变与不变之间存在着一定得规律。虽然方法看似不同,但都是利用比例尺的意义来灵活解答的.。
3、练习:
先量出天河体育中心到烈士林园的图上距离,再算出实际距离大约是多少米? 仔细观察所有信息, 想一想,要求从天河体育中心到烈士林园的时间?我们必须先求什么?
运用我们刚才研究的知识能解决这个问题吗 做在练习本上。
学生独立做,师巡视
生1:(方程)师:怎么想的?
生2:计算
师小结:同学们真了不起,自己解决了这个问题。根据比例尺的意义解决了地图旅行中的问题。其实在我们生活中比例尺的应用还有很多,看一下这两道题,先仔细读题,想一想,做在练习本上。
三、巩固练习。
1、基本练习
出示:按1:1000的比例尺做出的邮电大楼模型,高为16.8厘米,邮电大楼的实际高度是多少米?师读题
独立完成。
按10:1的比例尺放大的手表截面图,图中的表盘的直径是20厘米,这个表盘的实际直径是多少厘米?
学生独立解答; 汇报交流。
2、提高练习:
出示:课件 你能帮助他们解决这个问题吗?
想一想,再做出来。
生读
汇报:两种方法
观察这两种方法,你想说些什么?
3、老师还了解到,有的同学想到省内给地走走,看这是我们山东省的一幅地图。
自己设计出你的出游路线,算一算行程。
四、回顾小结
【《比例尺的应用》的教学设计】相关文章:
1.比例尺的教学设计
6.比例尺的教学反思
7.比例尺教学设计