初三数学二次函数的教学设计

2020-08-22教学设计

初三数学二次函数的教学设计

  教学目标

  知识技能 1. 能列出实际问题中的二次函数关系式;

  2. 理解二次函数概念;

  3. 能判断所给的函数关系式是否二次函数关系式;

  4. 掌握二次函数解析式的几种常见形式.

  过程方法 从实际问题中感悟变量间的二次函数关系,揭示二次函数概念.学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义.

  情感态度 使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。

  教学重点 理解二次函数的`意义,能列出实际问题中二次函数解析式

  教学难点 能列出实际问题中二次函数解析式

  教学过程设计

  教学程序及教学内容 师生行为 设计意图

  一、情境引入

  播放实际生活中的有关抛物线的图片,概括性的介绍本章.

  二、探究新知

  ㈠、用函数关系式表示下列问题中变量之间的关系:

  1.正方体的棱长是x,表面积是y,写出y关于x的函数关系式;

  2.n边形的对角线条数d与边数n有什么关系?

  3.某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都必上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?

  ㈡观察所列函数关系式,看看有何共同特点?

  、 、

  ㈢类比一次函数和反比例函数概念揭示二次函数概念:

  一般地,形如 的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。

  实质上,函数的名称都反映了函数表达式与自变量的关系.

  三、课堂训练(略)

  四、小结归纳:

  学生谈本节课收获

  1.二次函数概念

  2.二次函数与一次函数的区别与联系

  3.二次函数的4种常见形式

  五、作业设计

  ㈠教材16页1、2

  ㈡补充:

  1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是

  2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是____________.

  3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是_______,若年利率为6%,两年到期的本利共______元.

  4、在△ABC中,C=90,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是____;当a=8时,S=____;当S=24时,a=________.

  5、当k=_____时, 是二次函数.

  6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为_______________.

  7、已知s与 成正比例,且t=3时,s=4,则s与t的函数关系式为_______________.

  8、下列函数不属于二次函数的是( )

  A.y=(x-1)(x+2) B.y= (x+1)2 C.y=2(x+3)2-2x2 D.y=1- x2

  9、若函数 是二次函数,那么m的值是( )

  A.2 B.-1或3 C.3 D.

  10、一块草地是长80 m、宽60 m的矩形,在中间修筑两条互相垂直的宽为x m的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值范围.

【初三数学二次函数的教学设计】相关文章:

1.二次函数的教学设计

2.数学除法的教学设计

3.二次函数数学教案

4.《二次函数》教学设计

5.二次函数教学设计

6.数学的教学设计流程

7.数学老师的教学反思设计

8.以《语文和数学》为题的教学设计

上一篇:二次函数的教学设计下一篇:关于勇气作文400字左右