圆锥的体积教学设计范文

2018-11-23教学设计

  教学内容:九年义务教育六年制小学数学第十二册第48—50页。

  教学目的

  1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  [说明:教学目的是全课的中心,所以要明确具体。这节课教学目的就很明确具体,既有知识要求,又有能力和思想教育的要求,很全面,符合大纲要求。]

  教学重点:圆锥的体积计算。

  教学难点:圆锥的体积公式推导。

  教学关键:圆锥的体积是与它等底等高的圆柱体积的二分之一。

  教具准备:投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。

  学具准备:等底等高的圆柱和圆锥空心实物各一个

  教学过程:

  一、复习

  1、圆柱的体积公式是什么?

  2、底面积是19平方厘米,高是20厘米,求圆柱的体积是多少立方厘米?

  [说明:圆锥的体积,是与它等底等高的圆柱体积的1/3。因此,先复习圆柱的体积计算方法,抓住所学知识间的内在联系,为学习圆锥的体积计算方法作了很好的铺垫。]

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

  板书:圆锥的体积

  [说明:设疑激趣,激发学生探求新知识的欲望。l

  二、新课教学

  师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)

  投影出示下图:

  师:圆锥的底面是什么形状?

  生:圆锥的底面是圆形的。

  师:对。什么是圆锥的高呢?

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师演示:将刚才出示的圆锥图上的高往外移,标上字母h,如图所示:

  师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?

  生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。

  师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的部分等等。谁上来指一指这支铅笔圆锥型部分?(略)

  师:对圆锥我们已经有了一个初步的认识。现在,我们一起来看一组圈,请你判断这些图中哪些是圆锥?哪些不是?为什么?

  投影出示下列图形:

  生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。

  师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?

  生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。

  师:说得有道理。你能不能将这个圆锥摆正。

  (一名学生到前面旋转投影片,将圆锥图形一一摆正)

  师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。

  [说明:圆锥的认识,教师是让学生通过看书自学去获得的。教师通过不断设疑,层层深入,帮助学生对书上内容逐步深化;然后,以生活中的圆锥形物体,进一步帮助学生加深认识;最后,用一组判断题要学生鉴别哪些是圆锥,哪些不是圆锥,符合学生的认知规律,从而达到知识的强化目的。]

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积(出示教具)。这是一个空心圆锥,这是一个空心圆柱。它们之间有什么关系呢?我们先来比较它们的底面。(师演示:将圆锥和圆柱的底面合在一起,完全重合。)

  生:它们的底面是相等的。

  师:我们再来比较它们的高。(师演示:用一把直尺架在两者之间,然后分别量一量它们的高。)

  生:它们的高也是相等的。

  师:那也就是说,这两个圆柱和圆锥是等底等高的。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,注意大拇指不要伸进去,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1。实验器材中,圆锥的底面和圆柱的底面有什么关系?官们的高有什么关系?

  2。圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  3。圆锥的体积怎么算?体职公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的

  器材中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?

  生:在实验器材中,圆锥的底面和圆柱的底面是相等的,它们的高也是相等的。

  师:我们再来讨论第2个问题。圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满水,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是V=1/3Sh。

  师:请大家把书翻到第49页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。这两个是等底不等高的圆锥和圆柱,边两个是等高不等底的圆锥和圆柱,我请两个同学上来用刚才做实验的方法试试看。

  (请两名学生上讲台示范实验)

  师:现在大家看清楚了吗?等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。

  生齐答:不是。

  [说明:变教具为学具,让学生亲自动手实验,使听党、视觉、触觉等各种感官一起参与活动,通过自己亲自动手操作,努力去探索圆锥体积的计算方法,这样的学习,学得活,记得牢,既发挥了教师的主导作用,又充分体现了学生的主体地位。]

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系,口答三道题目。师:出示小黑板,口算。

  求与下面圆柱等底等高的圆锥体的体积。

  1、圆柱体的体积是3立方厘米;

  2、圆柱体的体积是2。4立方分米;

  3、圆柱体的体积是1/2立方米;"

  生答略。

  师:大家回答得很好。接下来,请大家用圆锥的体积计算公式来解答一道应用题。师出示第50页例1。

  例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一—样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验4知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3Sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

  三、巩固练习

  师:现在我们一起来做填表练习。

  出示小黑板:

  1、 填表:

  底面积S (平方米) 高h(米) 圆锥的体积(立方米)

  15 9 ()

  16 0.6 ()

  师:两题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

  2、求下面各圆锥的体积。

  (1)半径是3米,高是2米。

  (2)直径是4分米,高是6分米。

  (3)周长是6,28厘米,高是3厘米。

  3、有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

  [说明:练习有层次,形式多样。最后一个层次的练习,又回到动手实验上,而且强化的仍然是本节课最基本、最关键的内容。]

  师:这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用V=1/3Sh这个公式算圆锥体积时,要特别注意什么。

上一篇:北京亮起来了教学设计模版下一篇:《南辕北辙》的教学设计范文