商的变化规律数学说课稿
一、教学内容:人教课标版数学四年级上册第五单元例5“商的变化规律”第三个“商不变的规律”。
二、教材分析
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。裴老师教学的这一课,是在学生刚刚学习了除数不变,被除数和商的变化规律和被除数不变,除数和商的变化规律的基础上进行教学的。由于有了前面学习的基础,学生在语言表述和思维方面都没有太大的困难,学习起来比较轻松。
三、教学目标、重点难点
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现被除数和除数同时乘或除以一个相同的数(0除外),商不变的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重点:通过观察、比较、探讨发现商的变化规律。
教学难点:理解被除数和除数的变化同步性,商不变时,被除数和除数相同的变化情况。
四、教学设想
1、充分发挥学生主体作用,自主探究
本节课的教学内容是在前面学习两条规律的'基础上进行教学的。通过这一节课的学习,完善了三个规律,使商的变化规律更完整,也为学生今后的数学学习打下了坚实的基础。通过课堂教学的实施,引导学生积极参与到探究规律、总结规律的过程中,让学生在观察、思考、尝试、交流的过程中,实现师生互动、生生交流,促进学生主动参与知识的形成过程。
2、紧抓学生知识的生长点,将学生知识、能力有效延伸
本课通过研究商不变的规律,在学生初步感知到被除数、除数、商之间存在着变化的规律基础上,抓住学生这个知识的生长点,从单纯的算式计算延伸到算式内部、算式之间的联系上,延伸学生的知识范围。进而使学生通过本节课研究,经历数学规律产生或发现的一般过程。
3、尝试猜测—验证—总结结论的数学学习方法,学会辨证的分析问题
本课使学生在平常的口算练习中,根据思考,得出一个初步的推测,这个推测是否正确,是否具有普遍性都需要进行严格的验证,在验证的过程中,不仅仅使学生学会从广泛的正面举例中证明自己的推测,还要全面的分析,从相反方面思考举出反例,使得出的结论更加全面、正确。举反例对学生来说是个突破,能用逆向思维分析解决问题,对于学生将来的学习有着非比寻常的意义。整节课就在学生不断的猜测—验证—总结结论中,参与了获取知识的过程,尝试了这种数学学习方法。体现了新课程标准提出的不仅关注学生的学习结果,更要关注学生的学习过程,不仅要关注学生的知识和技能,更要关注学生的情感态度价值观。
五、教学过程
(一)创设情境,导入新课
教师出示:900÷25=?=36 6000÷125=? = 48 让学生口算结果,后面的这道题目由于难度较大,所以学生算不出来,而教师轻易的算了出来,给学生留下悬念。
(二)自主探索,发现规律
1、初步发现规律
口算一组:
14÷2=7 560÷80=7
140÷20=7 5600÷800=7
280÷40=7
观察这组算式,
得出:被除数乘10,2,除以2, 除数也跟着变化,而商不变
2、逐步完善,让学生举例验证我们刚发现的规律
询问学生还有别的发现吗?所有的数都符合这一规律吗?
突出被除数和除数同时乘0是不可以的。[小学教学设计网--更多数学说课]
(三)反馈练习,应用规律
这一部分分四个层次进行学习。
1、规律的直接应用:第94页第4题:从上到下,根据第1题的商写出下面两题的商.
72÷9= 36÷3= 80÷4=
720÷90= 360÷30= 800÷40=
7200÷900= 3600÷300= 8000÷400=
2、规律的运用增加了难度,让学生体会到应用规律计算的方便:1400000÷200000=
3、通过判断哪个算式的结果与48÷12=4的商相等,说说理由的练习,进一步深化学生对规律的理解和应用。
① (48÷4)÷(12÷4) ② (48times;5)÷(12times;5)
③ (48times;3)÷(12÷3) ④ (48÷3)÷(12÷4)
4、考查学生对规律的灵活掌握情况,通过900÷25的题目,让学生把被除数和除数同时乘4,然后化难为易。
在这几个巩固反馈中,采用不同的方式,从不同的侧面帮助学生理解和掌握“商不变规律”。而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
【商的变化规律数学说课稿】相关文章: