《解决问题的策略》评课稿
《解决问题的策略》评课稿1
今天下午,特级教师朱xx工作室走进xx小学,开展教学研讨活动。卫老师的《解决问题的策略》一课中,学生争相展示自己的想法,踊跃表达自己的思考过程,这一课给我的启示颇多。
学生在学习一步计算的实际问题时,已经能够根据给定的两个已知条件提出一步计算的问题,具备了学习“从条件向问题推理”的思想基础。
卫老师的课堂从一包棒棒糖开始,这是给课中表现好的孩子的奖品。别以为这只是一个奖品,这里它也引发了一个数学问题,“猜一猜里面有多少根?”顿时孩子们七嘴八舌,各有各的猜测。当卫老师再给了一个提示,“比他猜的24根少2根”时,孩子们异口同声地说出了答案。生活中的例子给了孩子们无穷的求知欲,孩子们个个兴趣盎然,轻松愉悦的课堂就从这里开始了。
例题引导学生从条件想起,初步获得从条件向问题推理的体会。
小猴第一天摘30个桃,以后每天都比前一天多摘5个。小猴第三天摘了多少个?第五天呢?学生读题以后,会把注意力集中在“以后每天都比前一天多摘5个”这个条件上面。教师学生深入思考,充分说说对这个条件的理解,把比较概括的已知条件尽量说具体、说详细。
出于对已知条件“每天都比前一天多摘5个”的充分理解,多数学生就会形成自己的解题主张,很自然地依次计算第二天、第三天……各摘多少个桃。这些想法,不是教材或别人告诉学生的,而是他们根据条件向问题推理的结果,是分析数量关系的结果。卫老师适时引导孩子讨论:说一说先根据()和(),求出(),再根据()和()求出(),帮助孩子理清思路,学会自己分析问题。
卫老师提供了教材中的两种方法解决这个问题,通过填表或列式计算求出答案,同时也鼓励孩子们能用自己的第三种解决这个问题。
回顾解决问题的过程,交流解题的体会,是学生形成解决问题策略不可缺少的环节。“从条件想起,向问题一步步靠拢”应该是所有学生的共识。让孩子们体会自己是从条件“每天都比前一天多摘5个”得出解题思路和方法的,感受像这样思考是解决问题的一种有效方法。
巩固练习安排的实际问题,都是应用本课教学的思考策略,有利于学生更好地适应从条件向所求问题的推理。
习题中有一题涉及到生活中球的反弹,为了让孩子们更好地理解“每次弹起的高度总是落下高度的一半”这句话,卫老师精心设计了视频进行演示,让孩子们的理解更直观,更具体。根据演示,孩子们可以依次填出球第一次、第二次、第三次的高度。生动的多媒体演示恰到好处,让孩子们数学的学习不再抽象。
小猴铺地砖的习题是对孩子们思维的提升。有170块地砖和50千克水泥,白地砖有8行,每行15块,花地砖比白地砖少70块。求花地砖的块数。孩子们需要自己选择有用的条件来解决问题。这题有两种思路,既可以先求出白地砖的块数,再根据“花地砖比白地砖少70块”求出花地砖的块数;也可以先求出白地砖块数,再根据“有170块地砖”来求出花地砖的块数。从条件向问题推理的过程,是对问题情境里的数学信息进行“再加工”的过程。孩子们能够把比较复杂的问题化简,找到问题情境里有直接联系的已知条件,并利用它们得出新的数量。
以上我只简单地说了卫老师的课堂安排让我深思,更还有精心制作的课件大大提高了教学效果,老师的教态自然亲切,和孩子的配合密切,学生在活动中积极思考,学习积极性高,课堂气氛活跃等,这些都是我在今后的教学中需要学习和改进的地方。
《解决问题的策略》评课稿2
今天上午听了校级研究课卢**老师的执教的《解决问题的策略——列举》感触很深。
无论是卢老师精心的教学设计,巧妙的课堂构思,还是学生的积极配合,踊跃发言都给我们留下了深刻的印象。
在下午的集体备课中,很多老师都提到了卢老师类似的优点,这里不再多说,只是想和大家分享一下听完这堂课后的一些困惑和想法。
1、本课的教学重难点是让学生理解一一列举的方法,并能主动运用这种方法来解决生活中的一些问题。首先,我认为让学生明白为什么我们要用一一列举的策略来解决问题是最重要的。教学中,教师所呈现给学生的几道例题:如用18跟栅栏围长方形,有几种围法?订阅3种书籍的不同订法……都需要首先让孩子明白为什么我们要选择一一列举的策略,选择其他方法容易出现什么问题? 这一点卢老师做的比较到位,她通过展示了几位同学的作业情况,让孩子自己发现问题,有的答案重复了,有的答案遗漏了,为了防止类似的'情况发生,接着卢老师顺其自然的提到了一一列举法,让孩子在遇到问题和困扰后接受起来比较容易些。
2、本课的第二个重点是教孩子如何使用一一列举法?使用一一列举法书上主要是列表法。这种方法虽然可以但不实用。一、上课时孩子没有时间去画表格。二、这种方法相对来说不是最方便和最容易让孩子接受的。在教学例2时,订阅3种书籍有几种方法呢?卢老师让孩子放手自己去解决。结果让人惊喜,大部分孩子解决起来毫无困难,甚至还有相当一部分孩子已经想到了用字母或者数字来代替书籍的名字来列举。这种方式简洁明了,通俗易懂,最重要的是孩子自己动脑思考的结果,不得不让在场听课的老师为之惊叹。看来放手让孩子去做,有时确实能够获得意外的惊喜。听到这里,我不禁要问,既然孩子最易接受用符号来列举的方法,那书上介绍的列表法是否可以不讲或者略讲呢?
3、例3是道关于投镖的问题。标靶上有3种情况,10环,8环和6环。投2次得到的总环数会有几种情况?在这里,卢老师和学生一起探讨了4种情况:一、两次投中的环数相同。二、两次投中的环数不同。三、一次投中一次未投中。四、两次都未投中。我个人认为分为四类不太恰当,应该分成三类较清楚,第一种和第二种情况完全可以合二为一,其实说的就是两次都投中的情况,只不过在这个前提下再细分为两类而已。这样分类讲起来可能才更加清楚点。
4、投标的结果出现了重复。如8+8=16,10+6=16,这两种情况尽管答案相同,但表示的意思是不一样的,教师在讲解的时候一定要注意讲清楚。为了防止学生的答案写的不清楚,在答时也应建议学生将所有的答案有序排列,这样才能做到不重复,不遗漏。
以上是我听完课后一些不成熟的想法,希望能够与大家分享,还望批评指正,共同学习!
【《解决问题的策略》评课稿】相关文章: