初一数学课件

2020-06-21教案

  第一章 有理数

  1.1 正数与负数

  ①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

  ②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

  ③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

  注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

  1.2 有理数

  1、有理数

  (1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

  2、数轴

  (1)定义 :通常用一条直线上的点表示数,这条直线叫数轴;

  (2)数轴三要素:原点、正方向、单位长度;

  (3)原点:在直线上任取一个点表示数0,这个点叫做原点;

  (4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。

  3、相反数

  只有符号不同的两个数互为相反数。(如2的相反数是-2,0的相反数是0)

  4、绝对值

  (1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

  (2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  1.3 有理数的加减法

  有理数加法法则:

  1、同号两数相加,取相同的符号,并把绝对值相加。

  2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3、一个数同0相加,仍得这个数。

  加法的交换律和结合律。

  有理数减法法则:减去一个数,等于加这个数的相反数。

  1.4 有理数的乘除法

  有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  乘法交换律、结合律、分配律。

  ②有理数除法法则:

  除以一个不等于0的数,等于乘这个数的倒数;

  两数相除,同号得正,异号得负,并把绝对值相除;

  0除以任何一个不等于0的数,都得0。

  1.5 有理数的乘方

  1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

  2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学记数法,注意a的范围为1≤a<10。

  第二章 整式的加减

  2.1 整式

  1、单项式

  由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是不是单项式,关键要看代数式中数与字母是不是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,也不是单项式.

  2、单项式的系数

  指单项式中的数字因数。

  3、单项数的次数

  指单项式中所有字母的指数的和。

  4、多项式

  几个单项式的和。判断代数式是不是多项式,关键要看代数式中的每一项是不是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的'项包括它前面的性质符号。

  5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  6、单项式和多项式统称为整式。

  2.2整式的加减

  1、同类项

  所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(不等于0)无关。

  2、同类项必须同时满足两个条件

  (1)所含字母相同;(2)相同字母的指数相同。二者缺一不可.

  同类项与系数大小、字母的排列顺序无关。

  3、合并同类项

  把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

  4、合并同类项法则

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  5、去括号法则

  去括号,看符号:是正号,不变号;是负号,全变号。

  6、整式加减的一般步骤:一去、二找、三合

  (1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项。

  第三章 一元一次方程

  3.1 一元一次方程

  1、方程是含有未知数的等式。

  2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

  注意:判断一个方程是否是一元一次方程要抓住三点:

  (1)未知数所在的式子是整式(方程是整式方程);

  (2)化简后方程中只含有一个未知数;

  (3)经整理后方程中未知数的次数是1.

  3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

  4、等式的性质

  (1)等式两边同时加(或减)同一个数(或式子),结果仍相等;

  (2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

  注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.

上一篇:整式方程课件下一篇:整式的乘除的数学课件