有关数学说课稿初中模板汇编5篇
作为一位杰出的老师,就难以避免地要准备说课稿,认真拟定说课稿,怎么样才能写出优秀的说课稿呢?下面是小编为大家收集的数学说课稿初中5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学说课稿初中 篇1
一、 教材分析
本节課主要是在学生学习了整式乘法、多项式乘以多项式的基础上,由图形的面积引出本节課的内容。在前面一节学生已学过"平方差公式" ,而这一节課继续探索完全平方公式。
完全平方公式不仅在整式乘法运算中有很重要的作用,也是今后分解因式、一元二次方程解法、二次函数等有关内容的基础知识。
二、 教学目标
1. 使学生经历探索完全平方公式的过程,进一步发展符号感和推理能力。
2. 会推导完全平方公式,并能运用公式进行简单的计算。
3. 了解(a+b)2 = a2+2ab+b2 的几何背景,向学生渗透数形结合的思想,让学生知道数学来源于实践,培养学生对数学的兴趣。
4. 培养学生能在独立思考的基础上,积极参与对数学问题的讨论,并敢于表达自己的观点,体验到解决问题的成功感。
三、 教学重难点确定
推导公式(a±b)2 = a2±2ab+b2 和对公式的正确理解是本节課的教学重点,对完全平方公式的运用是本节課教学的难点。
四、 学情分析
1.在知识掌握上,前面,学生已学过多项式乘以多项式的运算,特别是已有推导平方差公式的基础,再推导完全平方公式不是很困难。但是对于几何图形如何用代数来表示,从而表示图形的面积,学生会有一定困难,另外,在运用公式时,对公式中a、b的理解,对"和""差"符号的区别也会有些障碍。
2.我所教的班级的学生,对数学课有一定的兴趣,爱发表见解,但是学生好动,注意力有时不集中,所以在教学中运用图形的直观形象提出问题,引发学生的兴趣,并引导学生发表见解,培养他们有条理的思考和语言的表达能力。
五、教学策略
1.学生已经有多项式乘法的基础,前面又有了推导平方差公式的经验,所以,本节课主要以观察、思考、讨论贯穿于整个教学环节中,采用启发式教学法和师生互动式教学模式。教给学生"多观察、多思考多动手"的学习方法,教学中利用板书和例题向学生提供较多的活动机会和空间,使学生在"动脑、动口、动手"的过程中,掌握本节课的知识内容,从而培养学生独立解决问题的能力。
六、教学程序设计
㈠ 复习提问,引入新课。
教师首先复习提问:
1.前面我们学过了多项式乘以多项式的运算,请计算:
①(2x+3)( x-2)=
②(2x+3)(2x-3)=
找学生口述,老师板演。
2.刚才的第②小题,同学直接得出正确结果。运用了什么公式?正确表达公式的内容(让学生回答)。前面我们已经学过了平方差公式,符合这种类型的多项式乘法运算很简便,今天,我们再来学习新的公式。
引出今天的课题。
㈡ 教师引导,推导公式。
1.教师用幻灯片演示教科书第33页第引例,让学生观察图片,并提出问题:图片中的图形面积可分为几部分?它们都是什么图形?每部分面积是多少?整个图形面积如何表示?有几种表示方法?它们的关系是什么?让学生四人一小组进行讨论、研究,最后在班级交流,由各组推举代表,回答上面的问题,教师统一同学们的意见,确定正确的答案。
2.教师再用幻灯片演示教课书中的"想一想" ,分别让三个学生到黑板板书,用乘法法则计算。
① (a+b)2 =(a+b)(a+b)=
② (a-b)2 =(a-b)(a-b)=
③ 2 = =
其余同学在下面练习本上计算。
同学们计算出正确结果后教师总结,今天所学的公式叫做"完全平方公式" ,教师板书公式后,再让学生练习用语言叙述公式。
㈢ 熟记公式,简单运用。
1.教师根据黑板书写的公式,请同学们观察两个式子有什么特点?引导学生观察项数、次数、符号、两个公式的异同点,学生先互相讨论,然后再回答。
2.师生共同完成例1.
教师先板演第⑴小题,教师板演时先讲清哪一项是公式中的a、b,正确按公式书写,最后再化简,教师演示过后,找二个同学板书第⑵、第⑶小题,其他同学在练习本上做,教师巡回检查,纠正错误。
㈣ 归纳总结,练习反馈。
1.师生共同完成例1后。师生共同总结今天所学的内容,教师提出问题,可以让学生回答,回答不准确、不完整,教师给予补充。
⑴ 今天学习了什么公式?如何表述?
如何用图形表示(a+b)2 ,如何用乘法法则计算(a+b)2 、(a-b)2
⑵ 完全平方公式有什么特点?
⑶ 运用公式要注意什么?
要注意公式中的a、b可代表单个数字、单个字母或代数式,要分清"两数和""两数差"的公式中中间一项符号的区别。
2.学生独立完成教材第34页随堂练习,(补充两小题),完成后,同桌两人交换检查,教师抽查,把主要错误写在黑板上,表扬做得好的同学。
㈤ 布置作业,课后思考。
要求全体学生必做教材第36页习题1.13 1.2.3.
对学有余力的学生提出思考题。
⑴ 能否用完全平方公式计算(a+b+c)2 ,并得出结果。
⑵ 能否用乘法法则计算(a+b)3 ,并得出结果。
以上是我对本节课的设计安排,有不足或错误之处,请各位老师批评指正。谢谢!
数学说课稿初中 篇2
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从同学们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对同学们进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级同学们的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发同学们热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级同学们的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导同学们动手实验突出重点,合作交流突破难点。
二、学情分析
初二同学们已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要同学们通过动手操作,在观察的基础上,大胆猜想数学结论。但同学们在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
三、教学与学法分析
教学方法
叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导同学们由浅入深的探索,设计实验让同学们进行验证,感悟其中所蕴涵的思想方法。
学法指导
为把学习的主动权还给同学们,教师鼓励同学们采用动手实践,自主探索、合作交流的学习方法,让同学们亲自感知体验知识的形成过程。
四、教学过程
首先,情境导入 激问设疑
给出生活中的实际问题,调动同学们兴趣,启迪同学们思维,激发同学们创新热情和和情感体验。是同学们带着好奇心开始本节课的学习。
其次,自主探究,获取新知
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
1. 追溯历史 解密真相
让同学们欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使同学们明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发同学们的求知欲望,另一方面,也对同学们进行了学习方法指导和解决问题能力的培养。
2.动手操作----探求新知
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,同学们充分利用学具去尝试解决,力求让同学们自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
这里首先引导同学们观察图1、图2、图3,让同学们计算每个图中的三个正方形的面积,(注意:同学们可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于同学们主动参与探索,感受学习的过程,培养同学们的语言表达能力,体会数形结合的思想;也有利于突破难点,让同学们体会到观察、猜想、归纳的思路,让同学们的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。
从上面低起点的问题入手,有利于同学们参与探索。同学们很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。同学们会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导同学们利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
3、自己动手,拼出弦图
让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了同学们,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,同学们们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,同学们将展示"割"的方法, "补"的方法,有的同学们可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定同学们的研究成果,培养同学们的类比、迁移以及探索问题的能力。
以上三个环节层层深入步步引导,同学们归纳得到命题,从而培养同学们的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
合作交流,讲述论证
教材中直接给出"赵爽弦图"的证法对同学们的思维是一种禁锢,我创新使用教材,利用拼图活动解放同学们的大脑,让同学们发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给同学们充分的自主探索的时间与空间,让同学们的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到同学们中间,观察同学们探究方法接受同学们的质疑,对于不同的拼图方案给予肯定。从而体现出"同学们是学习的主体,教师是组织者、引导者与合作者"这一教学理念。同学们会发现两种证明方案。
方案1为赵爽弦图,同学们讲解论证过程,再现古代数学家的探索方法。方案2为同学们自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让同学们经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让同学们体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使同学们感受数学文化,培养民族自豪感和爱国主义精神。增强了同学们学习数学的兴趣和信心。
我按照"理解—掌握—运用"的梯度设计了如下四组习题。
(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用
最后、温故反思 任务后延
在课堂接近尾声时,我鼓励同学们从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体同学们的理念。
五、板书设计
板书勾股定理,进而给出字母表示,培养同学们的符号意识。
六、学习评价
本课意在创设和谐的乐学气氛,始终面向全体同学们,"以同学们的发展为本"的教育理念,课堂教学充分体现同学们的主体性,给同学们留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发同学们的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助同学们去理解和转化,而更多时候需要同学们自己去探索,尝试,得出正确结论。