基本初等函数的导数公式及导数运算法则测试题(2)

2018-07-17试题

二、填空题

  11.若f(x)=x,(x)=1+sin2x,则f[(x)]=_______,[f(x)]=________.

  [答案] 2sinx+4,1+sin2x

  [解析] f[(x)]=1+sin2x=(sinx+cosx)2

  =|sinx+cosx|=2sinx+4.

  [f(x)]=1+sin2x.

  12.设函数f(x)=cos(3x+)(0<),若f(x)+f(x)是奇函数,则=________.

  [答案] 6

  [解析] f(x)=-3sin(3x+),

  f(x)+f(x)=cos(3x+)-3sin(3x+)

  =2sin3x++56.

  若f(x)+f(x)为奇函数,则f(0)+f(0)=0,

  即0=2sin+56,+56=kZ).

  又∵(0,),6.

  13.函数y=(1+2x2)8的导数为________.

  [答案] 32x(1+2x2)7

  [解析] 令u=1+2x2,则y=u8,

  yx=yuux=8u74x=8(1+2x2)74x

  =32x(1+2x2)7.

  14.函数y=x1+x2的导数为________.

  [答案] (1+2x2)1+x21+x2

  [解析] y=(x1+x2)=x1+x2+x(1+x2)=1+x2+x21+x2=(1+2x2)1+x21+x2.

三、解答题

  15.求下列函数的导数:

  (1)y=xsin2x;(2)y=ln(x+1+x2);

  (3)y=ex+1ex-1;(4)y=x+cosxx+sinx.

  [解析] (1)y=(x)sin2x+x(sin2x)

  =sin2x+x2sinx(sinx)=sin2x+xsin2x.

  (2)y=1x+1+x2(x+1+x2)

  =1x+1+x2(1+x1+x2)=11+x2 .

  (3)y=(ex+1)(ex-1)-(ex+1)(ex-1)(ex-1)2=-2ex(ex-1)2 .

  (4)y=(x+cosx)(x+sinx)-(x+cosx)(x+sinx)(x+sinx)2

  =(1-sinx)(x+sinx)-(x+cosx)(1+cosx)(x+sinx)2

  =-xcosx-xsinx+sinx-cosx-1(x+sinx)2.

  16.求下列函数的导数:

  (1)y=cos2(x2-x); (2)y=cosxsin3x;

  (3)y=xloga(x2+x-1); (4)y=log2x-1x+1.

  [解析] (1)y=[cos2(x2-x)]

  =2cos(x2-x)[cos(x2-x)]

  =2cos(x2-x)[-sin(x2-x)](x2-x)

  =2cos(x2-x)[-sin(x2-x)](2x-1)

  =(1-2x)sin2(x2-x).

  (2)y=(cosxsin3x)=(cosx)sin3x+cosx(sin3x)

  =-sinxsin3x+3cosxcos3x=3cosxcos3x-sinxsin3x.

  (3)y=loga(x2+x-1)+x1x2+x-1logae(x2+x-1)=loga(x2+x-1)+2x2+xx2+x-1logae.

  (4)y=x+1x-1x-1x+1log2e=x+1x-1log2ex+1-x+1(x+1)2

  =2log2ex2-1.

  17.设f(x)=2sinx1+x2,如果f(x)=2(1+x2)2g(x),求g(x).

  [解析] ∵f(x)=2cosx(1+x2)-2sinx2x(1+x2)2

  =2(1+x2)2[(1+x2)cosx-2xsinx],

  又f(x)=2(1+x2)2g(x).

  g(x)=(1+x2)cosx-2xsinx.

  18.求下列函数的导数:(其中f(x)是可导函数)

  (1)y=f1x;(2)y=f(x2+1).

  [解析] (1)解法1:设y=f(u),u=1x,则yx=yuux=f(u)-1x2=-1x2f1x.

  解法2:y=f1x=f1x1x=-1x2f1x.

  (2)解法1:设y=f(u),u=v,v=x2+1,

上一篇:函数的奇偶性与周期性复习试题下一篇:反比例函数单元综合测试题