一、选择题(每小题3分,共30分):
1.下列变形正确的是()
A.若x2=y2,则x=yB.若,则x=y
C.若x(x-2)=5(2-x),则x=-5D.若(m+n)x=(m+n)y,则x=y
2.截止到2010年5月19日,已有21600名中外记者成为上海世博会的注册记者,将21600用科学计数法表示为()
A.0.216×105B.21.6×103C.2.16×103D.2.16×104
3.下列计算正确的是()
A.3a-2a=1B.x2y-2xy2=-xy2
C.3a2+5a2=8a4D.3ax-2xa=ax
4.有理数a、b在数轴上表示如图3所示,下列结论错误的是()
A.b
C.D.
5.已知关于x的方程4x-3m=2的解是x=m,则m的值是()
A.2B.-2C.2或7D.-2或7
6.下列说法正确的是()
A.的系数是-2B.32ab3的次数是6次
C.是多项式D.x2+x-1的常数项为1
7.用四舍五入把0.06097精确到千分位的近似值的有效数字是()
A.0,6,0B.0,6,1,0C.6,0,9D.6,1
8.某车间计划生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,这所列方程为()
A.13x=12(x+10)+60B.12(x+10)=13x+60
C.D.
9.如图,点C、O、B在同一条直线上,∠AOB=90°,
∠AOE=∠DOB,则下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠BOD=90°.其中正确的个数是()
A.1B.2C.3D.4
10.如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB=∠MFE.则∠MFB=()
A.30°B.36°C.45°D.72°
二、填空题(每小题3分,共18分):
11.x的2倍与3的差可表示为.
12.如果代数式x+2y的值是3,则代数式2x+4y+5的值是.
13.买一支钢笔需要a元,买一本笔记本需要b元,那么买m支钢笔和n本笔记本需要元.
14.如果5a2bm与2anb是同类项,则m+n=.
15.900-46027/=,1800-42035/29”=.
16.如果一个角与它的余角之比为1∶2,则这个角是度,这个角与它的补角之比是.
三、解答题(共8小题,72分):
17.(共10分)计算:
(1)-0.52+;
(2).
18.(共10分)解方程:
(1)3(20-y)=6y-4(y-11);
(2).
19.(6分)如图,求下图阴影部分的面积.
20.(7分)已知,A=3x2+3y2-5xy,B=2xy-3y2+4x2,求:
(1)2A-B;(2)当x=3,y=时,2A-B的值.
21.(7分)如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=
14°,求∠AOB的度数.
22.(10分)如下图是用棋子摆成的“T”字图案.
从图案中可以看出,第1个“T”字型图案需要5枚棋子,第2个“T”字型图案需要8枚棋子,第3个“T”字型图案需要11枚棋子.
(1)照此规律,摆成第8个图案需要几枚棋子?
(2)摆成第n个图案需要几枚棋子?
(3)摆成第2010个图案需要几枚棋子?
23.(10分)我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?
根据下面思路,请完成此题的解答过程:
解:设星期三中午小明从家骑自行车准时到达学校门口所用时间t小时,则星期一中午小明从家骑自行车到学校门口所用时间为小时,星期二中午小明从家骑自行车到学校门口所用时间为小时,由题意列方程得:
24.(12分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.
(1)当PA=2PB时,点Q运动到的
位置恰好是线段AB的三等分
点,求点Q的运动速度;
(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?
(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.