详谈自噬在脑缺血性损伤中的作用论文(2)

2020-04-05实用文

 4 自噬在脑缺血性损伤中的作用研究证明,细胞损伤的严重程度直接关系到自噬在脑缺血性损伤中的作用。在轻度饥饿、缺氧等情况下,自噬不仅通过降解蛋白提供能量,而且能够通过降解损伤的蛋白后合成新的蛋白,从而保护着机体的细胞。若重度饥饿、缺氧,或延长细胞损伤的时间,激活凋亡相关调控蛋白产生凋亡后,自噬也过度激活,过度激活的自噬又进一步促进凋亡的发生,从而对机体产生损伤作用[3]。

  4.1 自噬减轻脑缺血损伤

  有研究表明,自噬可保护神经细胞,减轻缺血性损伤。Carloni等通过对新生1周SD大鼠脑部缺糖缺氧后发现,短时间内即可产生自噬,用自噬抑制剂三甲基腺嘌呤(3methyladenine,3MA)和渥曼霉素(wortmannin,WM)抑制自噬后,坏死的细胞数量增多,而自噬激动剂雷帕霉素使细胞坏死和凋亡明显减少,且证明是通过PI3KAktmTOR通路对缺血后的损伤发挥保护作用。Chauhan等通过建立大鼠局灶性脑缺血模型和原代海马神经细胞缺糖缺氧损伤即氧糖剥夺(oxygenglucosedeprivation,OGD)模型,并采用MRI成像观察,发现大鼠缺血后1h腹腔注射雷帕霉素可以使得脑梗死的体积减少,过氧化物歧化酶、谷氨酸等的释放受到抑制,海马神经细胞OGD后产生自噬并一直能持续至复糖复氧后的48h,用自噬抑制剂3MA抑制自噬后,OGD模型的损伤加重,进而从体内和体外水平证明自噬对该细胞造模后的损伤具有保护作用。Sheng等证实缺血预适应(ischemicpreconditioning,IPC)可诱导神经细胞自噬,自噬抑制剂抑制自噬后可增加脑的梗死体积和水肿程度。而自噬激动剂雷帕霉素作用后的效果则相反,其保护作用的发生过程主要通过IPC的直接保护神经细胞以及上调热休克蛋白70(heatshockprotein70,HSP70)的表达,并已证实HSP70对细胞具有保护作用。Yan等对大鼠制备高压氧预适应模型,发现自噬激动剂雷帕霉素产生自噬后,能模拟高压氧预适应的生物学效应,从而减轻脑缺血性损伤。Balduini等研究发现,缺血缺氧等应激状态下的细胞存活较低,若自噬发生后,其存活率会明显提高,因此认为自噬在应激状态下对细胞产生保护作用。丁培炎等以短期禁食诱导大鼠脑局灶性缺血/再灌注模型,研究其损伤的作用,发现短期禁食后产生自噬,自噬能减轻该模型引起的损伤作用,因此证明该模型中自噬对细胞具有保护作用。Wang等研究脑缺血后自噬产生神经保护作用的主要机制,发现烟酰胺转磷酸核糖激酶和ARRB1/βarrestin1是其分子机制的主要作用基础,且该分子同时作用于BECN1与自噬。高博等通过制备局灶性脑缺血预适应模型,采用两次插入线栓法引起内质网应激并诱导出自噬,发现自噬在该模型中起保护作用,且用内质网应激抑制剂SAL能阻断该保护作用,猜测SAL阻断内质网应激后,抑制了自噬的活性,从而阻断了相关的保护作用。王燕梅等通过短暂全脑缺血和短暂全脑缺血-低氧处理建立短暂全脑缺血模型后,比较海马CA1区中自噬相关蛋白LC3、LAMP2和组织蛋白酶D的蛋白表达情况,发现低氧后处理产生的自噬对短暂全脑缺血起保护作用。

  4.2 自噬加重脑缺血损伤

  另有研究证实,自噬可加重脑缺血损伤。Wen等通过对大鼠建立永久性脑缺血模型,发现缺血后即能产生大量的自噬,并且自噬抑制剂3MA和组织蛋白酶抑制自噬后,脑梗死体积减少,神经自身修复功能增强,提示该损伤产生的自噬可加重脑缺血引起的损伤。Puyal等对新生12d的大鼠通过短暂性左侧大脑中动脉闭塞(transientmiddlecerebralarteryocclusion,tMCAO)造成局灶性脑缺血,发现损伤后可产生细胞的坏死、凋亡和自噬,在再灌注起始及3h后注射自噬抑制剂3MA,自噬抑制并且脑梗死体积明显减少,因此认为自噬在局灶性脑缺血损伤中可加重脑缺血损伤。Wang等建立大鼠全脑缺血模型,并观察海马CAI区神经细胞,发现自噬抑制剂3MA在缺血前1h或0.5h加入,全脑缺血引起的神经元损伤能明显减轻。Zheng等利用RNA干扰技术(RNAinterference,RNAi)使得脑缺血大鼠体内自噬相关基因Beclinl表达下调,自噬抑制,皮质和纹状体处神经细胞损伤减轻,能抑制神经细胞的凋亡并可观察到大量神经细胞再生,提示自噬在该模型中可加重脑缺血损伤。Koike等利用ATG7缺陷的新生小鼠制作脑缺血模型,抑制了脑缺血中产生的自噬,结果发现ATG缺陷可保护脑缺血后海马区神经细胞引起的一系列损伤。石秋艳等对大鼠大脑中动脉缺血1d、3d、5d后再灌注,观察该时间对海马自噬的影响,结果发现自噬水平下调后缺血/再灌注损伤减轻。Xu等发现抑制自噬后,可减轻脑缺血后的神经损伤,且PPARγ的激动剂15脱氧前列腺素J2(15deoxyprostaglandinJ2,15dPGJ2)是其发挥神经保护作用主要分子基础。Shi等对原代皮质神经元细胞和人神经上皮瘤细胞(SHSY5Y)模拟体外脑缺血模型,发现自噬在缺糖缺氧6h后,复糖复氧24、48和72h后产生,并且该模型使得自噬过度激活,从而引起脑缺血后相关的神经细胞死亡,加重脑缺血引起的损伤。Jiang等研究表明,自噬抑制剂3MA抑制自噬后,脑缺血产生的一系列炎症可通过NFκB通路调节抑制,从而减轻了脑缺血后的损伤。Gao等研究表明脑缺血损伤后,抑制自噬相关的信号通路可减轻该损伤,并产生神经保护作用。

  5 结语

  综上,自噬既有利又有弊。自噬适度能使体内异常蛋白质及受损或过多的细胞器得到清除,从而维持着细胞的存活、分化、发育和稳态;而过度的自噬,可引起自噬性细胞死亡,并和细胞死亡的另两种形式凋亡、坏死交互作用,使细胞损伤加重。因此,研究脑缺血后自噬的相关作用,了解自噬的发生、发展过程,认清自噬发生的相关调节因素及信号通路,有助于根据自噬的特点和功能,针对脑缺血的治疗方式,发现新的治疗靶点和策略。

上一篇:创建环保模范城市口号大全下一篇:论无为在段誉人生中的积极作用论文