篇四:《数学家的眼光》读后感
数学家的眼光和普通人的眼光不同:在常人看来十分繁难的问题,数学家可能觉得很简单;常人觉得相当简单的问题,数学家可能认为非常复杂。张景中院士从中学生熟悉的问题入六,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉读者的是思考数学问题的思路和方法,重在帮助读者全面提高解决数学问题的能力。《数学家的眼光》被中外专家誉为是一部具有世界先进水平的科普佳作。
《数学圈》的序中写道:去吧,那些被课本和考卷异化和扭曲了的数学,忘记那一朵恶之花,我们会迎来新的百花园。……宣扬数学和数学家的思想和精神。目的不是教人学数学,而是改变人们对数学和数学家的看法,把数学融入大众文化,回到人们的生活。带着一点儿文艺欣赏的平和,你可以怀着360样心情来享受数学,经历它的趣味和生命,感悟符号后面的情感和人生。……从人数来说,数学家在文化人中顶多占一个测度为0的空间。但是,数学的每一点进步都影响着整个文明的根基。……“有谁知道,在微积分和路易十四时期的政治的朝代原则之间,在西方油画的空间透视和以铁路、电话、远距离武器制胜空间之间,在对位音乐和信用经济之间,原有深刻一致的关系呢?”……当你发现一个小公式也象一首小诗那么多情的时候,还忍心把它忘记吗?
数学的生活很简单。它没有圆滑的道理,也不为模糊的借口留下一点儿空间。
数学生活也浪漫。艺术家的想象力令人羡慕,而数学家的想象力更多。希尔伯特说过,如果哪个数学家一旦改行作了小说家(真的有),我们不要惊奇——因为拿人缺乏足够的想象力做数学家,却足够做一个小说家。懂一点数学的伏尔泰也感觉,阿基米德头脑的想象力比荷马的多。
数学是明澈的思维。有数学思维的人多了,(特别是那些穿戴科学外衣的骗子)的空间就小了。无限的虚幻能在数学找到最踏实的归宿。
数学是奇异的旅行。……
数学是纯美的艺术。数学的世界里没有丑陋的位置。在数学家眼里,自己笔下的公式和符号就象希腊神话里的那位塞浦路斯国王,从自己的雕像看到了爱人的生命。在数学里,在那比石头还坚硬的逻辑里,真的藏着数学家们的美的追求,藏着他们的性情和生命。
数学是永不停歇的人生,学数学的感觉就象在爬山,为了寻找新的山峰不停地去攀爬。……
数学圈没有起点,也没有终点,不论怎么走,只要走得够远,你总能到某个地方的。
这样充满热情和诗情的语言让我感慨万千:作为一门科学,为人类文明发展立下汗马功劳的数学,理应为所有的人珍重。这样的语言一反常人对数学的呆板陈述,让我体会了数学严谨的外衣下纯美的执着,字字句句给数学正名。作为一个并不是原本并不热爱数学的数学老师,一个对数学知之甚少的人,我不用掩饰对数学的无知。但我想,至少我拥有对数学崇敬的态度,这样的态度引领我走进数学圈,在这个让我惊叹的世界中,我聚集了内心的每一次讶异和喜悦,有一天,我会让学生通过我这种真实的感受,接纳数学,喜欢数学。
篇五:《数学家的眼光》读后感
高斯来说,他是德国著名数学家。在上小学时,小学老师对学生很不负责任。这天,老师让大家做从一加到一百的计算题,自己拿了一份报纸看了起来。不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字。老师也算过,答案也是5050。高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了。后来,凭着这股钻研劲儿,他取得了很大的成绩。学数学就要有这种创新的精神,如果一切都按照前人的方法来,那么就不会有新的方法出现,数学也不会出现新的突破。
第三,学数学还要有顽强的毅力。例如华罗庚,华罗庚因病左腿残疾后,走路要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步履,他曾幽默地戏称为“圆与切线的运动”。在逆境中,他顽强地与命运抗争,誓言是:“我要用健全的头脑,代替不健全的双腿!”凭着这种精神,他终于从一个只有初中毕业文凭的青年成长为一代数学大师。华罗庚一生硕果累累,是中国解析数论、典型群、矩阵几何学、自导函数论等方面的研究者和创始人,其著作《堆垒素数论》更成为20世纪数学论著的经典。华罗庚因为有了这种顽强的精神,才能在逆境中登上科学的最高峰。
第四,善于观察生活,勤于思考问题。牛顿和阿基米德就是这样。他有一次在树下看书,忽然一个苹果从天而降,掉到他头上。牛顿在疼痛之余,想到了苹果为什么会掉下来,于是他便开始了计算,而后发现了轰动世界的万有引力。
而阿基米德呢?又一次叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银子,便请阿基米德鉴定一下。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回
家中,大叫“找到了找到了” 他将这一流体静力学的基本原理,即物体在液体中的减轻的重量,等于排去液体的重量,总结在他的名着《论浮体》〔On Floating Bodies〕中,后来以『阿基米德原理』著称于世。
数学家的眼光和普通人的不同:在普通人眼中十分复杂的问题,在数学家眼中就变得异常简单;普通人觉得相当简单的问题,数学家可能认为非常复杂。作者张景中院士从我们熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉我们的是思考数学问题的思路和方法,让我们做题更加简便的“捷径”。
数学家的眼光可以从“三角形的内角和是180°”这个众人皆知的数学常识中看到“任意n边形外角和都是360°”,看到“蚂蚁在卵形线上爬一圈,角度改变量之和是360°”,这样的眼光,怎能不让人惊叹!
用圆规画线段﹐一般人立即反应:怎么可能呢?若按照常规思考,我们可能回答:“把圆规当铅笔用,再配合直尺,不就可以画线段了吗?”但是在只能用圆规不能用其它工具,画出绝对的直线段的情况下,可能就需要思考一下了。想一想,若不拘泥在平面上呢?用一个中空的圆罐子,将纸卷成圆柱状置入,将圆心固定在罐子中央,转动圆规,在罐子内侧的纸上画圆,当纸拿出后,线段便完成了!
鸡兔同笼,数学家的眼光从这个小学的数学问题又能看出什么呢?鸡兔同笼用方程的解法会很简单,但是它除了方程,还可以用最原始的方法去解。有人可能会笑了:有了简便的方法,还用那么笨的方法干什么?但如果倒过来想,用鸡兔同笼的方来做方程的话,那么很难方程不就好解了吗?
数学家的眼光,能从基本的数学常识中看出复杂的理论,能从不可能中看出可能,能从简单的问题中看出那题的解法。在数学家的眼中,最最基础的理论也可以衍伸变化出高深的数学问题。数学的领域是无穷广阔的,真正的关键在于自己,若我们用心观察四周的事物,抓住平凡的事实,思考、探索、发掘,会发现数学是耐人寻味且无所不在的。数学家的眼光从洗衣服中都能看见数学的影子,那么我们也一定能够从其它事情中看到数学,久而久之,就会慢慢理解数学,喜欢上数学。这样,数学就不再是让我们绞尽脑汁去思考的难题,而是生活中处处都有的小精灵。 篇六:《数学家的眼光》读后感
1980年,陈省身教授在北京大学的一次讲学中对三角形内角和定理作出质疑。他说:“人们常说,三角形内角和等于180°。但是,这是不对的!”
三角形的内角和等于180°这是一个熟知的定理,为什么说它不对呢?陈教授对大家的疑问作了精辟的解答说:“三角形内角和为180°”不对,不是说这个事实不对,而是说这种看问题的方法不对.应当说:“三角形外角和是360°”!
这是为什么呢?因为任意n边形外角和都是360°。把眼光盯住外角,就可以把多种情形用一个十分简单的结论概括起来了;用一个与n无关的常数代替了与n有关的公式,找到了—个更一般的规律。当然也是一个更简单的规律!
由此可见,尽管命题“三角的外角和为360°”和命题“三角的内角和为180°”是等价的,但是在数学家看来,这是不同的!因为在形式上,后者更简单,因此就更美,也就更有价值!事实果真如此,正是这与众不同的眼光,使陈教授抓住了更有价值的内角和,并由此出发,进一步把“多边形内角和等于360°”这个规律推广到闭曲线,推广到空间,进而发展为著名的陈氏类理论,做出了划时代的贡献。
这就是数学家的眼光!在这透彻、犀利的目光中,折射出来的是数学家的价值观和审美观,是数学家的穷追不舍,孜孜以求的探索真理的精神。
【《数学家的眼光》读后感六篇】相关文章:
4.眼光决定生死美文
5.欣赏的眼光作文
6.眼光作文800字
7.难忘的眼光作文
9.眼光的初三作文