数学教学计划(3)

2021-01-01实用文

数学教学计划 篇4

  首先,核心思想。

  为了让学生更好地学习初中二年级的数学,初中二年级主要是几何的基本知识。这些知识是成为当代社会相适应的公民所必须掌握的基本技能。初中二年级的数学学习对于进一步培养学生的计算能力、思维能力有着很大意义。

第二,教材分析。

  本学期的数学教学内容包括:第一章《生活中的轴对称》,第二章《勾股定理》,第三章《实数》,第四章《概率的初步认识》,第五章《平面直角坐标系》,第六章《一次函数》,第七章《二元一次方程组》。

第三,学生情况。

  初二(3)班共有45名学生,上一个学期学生期末考试成绩,优秀15人,良好15人,及格10人,不及格5人。总体来看,这个班级学生分数差异不大,整天分数较为平均。

第四,教学措施与方法

  1,理论研究:

  开展教育理论研究,特别是最新的教育理论学习,及时了解课程信息,以保持掌握课程学习趋势。定期养成教学观念的变化,形成新的课程教学思想,建立一个现代化的、科学的教育体系。

  2,各阶段教学计划:

  为了提高教学质量,以课程改革为指导,根据上一阶段的工作任务和教学内容,对于下阶段教学工作做出一个总体规划和安排,并为每个单位列出详细计划。

  3,备好每一节课与准备听课。

  仔细研究教学方案和教务材料,要注意的各个阶段的课程特点,对于每节课的书面教案做良好的课前备课。并且时刻做好接受上级领导的听课安排,认真做好听课准备。

  本次数学工作计划以制定之日起开始执行,如有不当,请给学校领导纠正,并实时监督。

数学教学计划 篇5

  教学目标

【知识与技能】

  使学生理解并掌握函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系;会确定函数y=a(x—h)2+k的图象的开口方向、对称轴和顶点坐标。

【过程与方法】

  让学生经历函数y=a(x—h)2+k性质的'探索过程,理解并掌握函数y=a(x—h)2+k的性质,培养学生观察、分析、猜测、归纳并解决问题的能力。

【情感、态度与价值观】

  渗透数形结合的数学思想,培养学生良好的学习习惯。

重点难点

【重点】

  确定函数y=a(x—h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x—h)2+k的性质。

【难点】

  正确理解函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x—h)2+k的性质。

教学过程

一、问题引入

  1。函数y=x2+1的图象与函数y=x2的图象有什么关系?

  (函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的。)

  2。函数y=—(x+1)2的图象与函数y=—x2的图象有什么关系?

  (函数y=—(x+1)2的图象可以看成是将函数y=—x2的图象向左平移一个单位得到的。)

  3。函数y=—(x+1)2—1的图象与函数y=—x2的图象有什么关系?函数y=—(x+1)2—1有哪些性质?

  (函数y=—(x+1)2—1的图象可以看作是将函数y=—x2的图象向左平移一个单位,再向下平移一个单位得到的,开口向下,对称轴为直线x=—1,顶点坐标是(—1,—1)。)

二、新课教授

  问题1:你能画出函数y=—x2,y=—(x+1)2,y=—(x+1)2—1的图象吗?

  师生活动:

  教师引导学生作图,巡视,指导。

  学生在直角坐标系中画出图形。

  教师对学生的作图情况作出评价,指正其错误,出示正确图形。

  解:(1)列表:

  xy=—x2y=—(x+1)2y=—(x+1)2—1

  …………

  —3——2—3

  —2—2——

  —1—0—1

  00——

  1——2—3

  2—2——

  3——8—9

  …………

  (2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点;

  (3)连线:用光滑曲线顺次连接各点,得到函数y=—x2,y=—(x+1)2,y=—(x+1)2—1的图象。

  问题2:观察图象,回答下列问题。

  函数开口方向对称轴顶点坐标

  y=—x2向下x=0(0,0)

  y=—(x+1)2向下x=—1(—1,0)

  y=—(x+1)2—1向下x=—1(—1,—1)

  问题3:从上表中,你能分别找到函数y=—(x+1)2—1,y=—(x+1)2与函数y=—x2的图象之间的关系吗?

  师生活动:

  教师引导学生认真观察上述图象。

  学生分组讨论,互相交流,让各组代表发言,达成共识。教师对学生回答错误的地方进行纠正,补充。

  函数y=—(x+1)2—1的图象可以看成是将函数y=—(x+1)2的图象向下平移1个单位得到的。

  函数y=—(x+1)2的图象可以看成是将函数y=—x2的图象向左平移1个单位得到的。

  故抛物线y=—(x+1)2—1是由抛物线y=—x2沿x轴向左平移1个单位长度得到抛物线y=—(x+1)2,再将抛物线y=—(x+1)2向下平移1个单位得到的。

  除了上述平移方法外,你还有其他的平移方法吗?

  师生活动:

  教师引导学生积极思考,并适当提示。

  学生分组讨论,互相交流,让各组代表发言,达成共识。

  教师对学生回答错误的地方进行纠正,补充。

  抛物线y=—(x+1)2—1是由抛物线y=—x2向下平移1个单位长度得到抛物线y=—x2—1,再将抛物线y=—x2—1向左平移1个单位得到的。

  问题4:你能发现函数y=—(x+1)2—1有哪些性质吗?

  师生活动:

  教师组织学生讨论,互相交流。

  学生分组讨论,互相交流,让各组代表发言,达成共识。

  教师对学生回答错误的地方进行纠正,补充。

  当x—1时,函数值y随x的增大而增大;当x—1时,函数值y随x的增大而减小;当x=—1时,函数取得最大值,最大值y=—1。

三、典型例题

  【例】 要修建一个圆形喷水池,在水池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?

  师生活动:

  教师组织学生讨论、交流,如何将文字语言转化为数学语言。

  学生积极思考、解答。

  指名板演,教师讲评。

  解:如图(2)建立的直角坐标系中,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数关系式是y=a(x—1)2+3(0≤x≤3)。

  由这段抛物线经过点(3,0)可得0=a(3—1)2+3,

  解得a=—,

  因此y=—(x—1)2+3(0≤x≤3),

  当x=0时,y=2。25,也就是说,水管的长应为2。25 m。

四、巩固练习

  1。画出函数y=2(x—1)2—2的图象,并将它与函数y=2(x—1)2的图象作比较。

  【答案】函数y=2(x—1)2的图象可以看成是将函数y=2x2的图象向右平移一个单位得到的,再将y=2(x—1)2的图象向下平移两个单位长度即得函数y=2(x—1)2—2的图象。

  2。说出函数y=—(x—1)2+2的图象与函数y=—x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标。

  【答案】函数y=—(x—1)2+2的图象可以看成是将函数y=—x2的图象向右平移一个单位,再向上平移两个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)。

五、课堂小结

  本节知识点如下:

  一般地,抛物线y=a(x—h)2+k与y=ax2的形状相同,位置不同,把抛物线y=ax2向上(或下)向左(或右)平移,可以得到抛物线y=a(x—h)2+k。平移的方向和距离要根据h、k的值来确定。

  抛物线y=a(x—h)2+k有如下特点:

  (1)当a0时,开口向上;当a0时,开口向下;

  (2)对称轴是x=h;

  (3)顶点坐标是(h,k)。

  教学反思

  本节内容主要研究二次函数y=a(x—h)2+k的图象及其性质。在前两节课的基础上我们清楚地认识到y=a(x—h)2+k与y=ax2有密切的联系,我们只需对y=ax2的图象做适当的平移就可以得到y=a(x—h)2+k的图象。由y=ax2得到y=a(x—h)2+k有两种平移方法:

  方法一:

  y=ax2

  y=a(x—h)2

  y=a(x—h)2+k

  方法二:

  y=ax2

  y=ax2+k

  y=a(x—h)2+k

  在课堂上演示平移的过程,让学生切身体会到两种平移方法的区别和联系,这里利用几何画板软件效果会更好。数学教学计划 篇6

  一、教学背景:

  为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。

二、学情分析:

  这学期我所带的班级仍是81和85,85班是普通班,基础知识水平较差,从期末考试的成绩来看,及格人数占20%;81班的总体水平比85班较好,但是从本次的考试成绩来看,成绩较为一般。及格人数只占到60%。这与我之前的计划相差还有一截儿。85班差生较多,期末成绩单位数的就有4人,针对这些情况,分析他们的知识漏洞及缺陷,及时进行查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。

三、新课标要求:

  初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

四、本学期学科知识在整个体系中的位置和作用:

  本册书的4章内容涉及《数学课程标准》中数与代数空间与图形和实践与综合应用三个领域的内容,其中第26章二次函数和第28章锐角三角函数的内容,都是基本初等函数的基础知识,属于数与代数领域。然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。第27章相似的内容属于空间与图形领域,其内容以相似三角形为核心,此外还包括了位似变换。在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。第29章投影与视图也属于空间与图形领域,这一章是应用性较强的内容,它从由物画图和由图想物两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。对于实践与综合应用领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了 课题学习数学活动等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习制作立体模型,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的实践与综合应用方面的要求。

【【精选】数学教学计划汇总6篇】相关文章:

1.【精选】数学教学计划汇总8篇

2.【精选】数学教学计划汇总九篇

3.精选数学教学计划汇总5篇

4.精选数学教学计划汇总10篇

5.精选数学教学计划汇总7篇

6.【精选】数学教学计划汇总5篇

7.精选数学教学计划汇总8篇

8.【精选】数学教学计划汇总10篇

上一篇:精选数学教学计划汇总8篇下一篇:九年级数学老师小组讨论与交流教学反思