《等式与方程》教学反思8
本课所体现的教育理念是要让学生在广泛的探究时空中,在民主平等、轻松愉悦的氛围里,应用已有知识经验,通过观察比较、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程之间的关系,并能进行辨析。使学生学会用方程表示具体甚或情境中的等量关系,进一步感受数学与生活之间的密切联系。同时提高学生的观察能力、分析能力和解决实际问题的能力。初步建立分类的思想。
这节课改变了传统的教法,从天平的平衡与不平衡引出等式,通过教师的引导,让学生去动脑筋思考,展示了学习的过程。学习的整个过程符合儿童认知发展的一般规律。从生活实际引进学生已有生活的经验,很自然地想到两种不同情况,并用式子表示,引出等式;其中有含有未知数、不含未知数的两种形式。体现“生活中有数学,数学可以展现生活”这一大众数学观,也体现了科学的本质是“来源于生活,运用于生活”。通过观察,探寻式子特点,再把这些式子进行两次分类,在分类中得出方程的意义,也看出了构成方程的两个条件,反映了认识事物从具体到抽象的一般过程。其中的观察、比较、分类,也是人类学习的基本手段、方法。
信任学生,充分发挥主体积极性。在教学过程中,放手让学生把各自的想法用式子表示出来,展示学生的学习成果;学习小组互相交流、检查,体现了学习的自主性;学习的过程、结果也由学生自己来体验、评价,大大激发了学生学习的积极性。
创新是永恒的,数学教学需要不断的革新,这样的课堂教学体现了当前小学数学课程改革和课堂教学改革的精神,注重从学生的生活实际出发引导学生大量收集反映现实生活的“式子”,初步建立式子的观念;再组织学生对这些式子进行比较、分类,逐步了解等式的意义;最后在对等式的去粗取精,对选定的素材通过观察、比较,明确方程的所有本质属性。本课注重了概念教学的一般要求,对方程这一概念的本质属性的探索全部由学生主动进行,注重呈现形式,从细微之处显示出教学的风格。
《等式与方程》教学反思9
作为教师,我们都有这样的体会:自然界的万事万物,事物息息相关,都是有联系的。知识是人类已经认识的世界,知识与世界“互映”。形象地说,知识也像一张大网,所有的知识都有千丝万缕的关系。每次学习的新知识只是网上的几个“结”,它与原有的知识经验之间有着必然的联系。在教师备课的过程中,需要了解每一个知识点的地位,也就是不仅要知道这些知识的源头在哪里?还要清楚这些知识会流向哪里。特级教师吴汝萍老师在《教育研究与评论》杂志上也有过这么一段观点:“源”,就是知识的源头,这个知识从哪里来,现在处在什么的位置;“流”就是这一知识有哪些应用,将来要“流”向哪里。
众所周知,教师需要一方面对知识的“源”与“流”进行梳理,即所谓的备教材;另一方面,更要清楚在学生脑海中这些知识的“源”与“流”会呈现怎样的精彩,即所谓的备学生。这是每个老师进行课堂教学前需要做的功课。
那么,学生呢?学生在课堂学习前需要做些什么呢?他们是不是也需要进行对知识“源”与“流”进行个性化的解读,猜想与质疑呢?下面笔者就自己这几年的实践研究,做一个简单的阐述:
近三年,我在“协同教育理论”指导下开展“小学数学绿树课堂”的实践与研究,其中让学生在课堂学习之前进行准备学习(后面谓之备学)是一个重点研究课题。
既然大家都认为学生不是如一张白纸来到我们的课堂,学生都是有着丰富的已有经验、个性色彩站立在课堂里的。那么,我认为,不仅教师需要备课,学生也需要备学。在我实验的初期,经常有老师问我一些问题,比如,备学的目的是什么?是不是就是提前学习?备学需要做些什么呢?
新知识是网上的一小部分,那么学生完全有能力找到与新知识有关系的知识经验、生活经验和思维经验,这些都是脑中的已有的信息,完全可以在课前搜集,哪些知识与新知学习是相关的,新知中的哪些问题是感到疑惑的。搜集已知,捕捉问题,看似简单的两个步骤,其实正是学生为新知的学习进行着“网游”,这种主动的行为就是一种“习”,“学而时习之,不亦乐乎“,不仅积极影响着学生的学习状态,而且进一步巩固了以前学过的知识,发展了学生的思维,也为教师的备学生了解学情提供了极大的的支撑。
举一个实例吧!五年级下册第一章节学习《方程》,我这样指导学生进行备学:
1、搜集天平的知识(可以问家长,可以查资料。)
2、阅读书P1—2,有哪些知识是你已经学过的?一一列举出来。
3、阅读书本后,你产生了什么问题?一一列举出来。
4、阅读范老师博客上的《关于方程的资料(1)》。
备学中,孩子们的真实思考最可贵,听听他们是怎么说的吧!
1、孩子们认为自己懂的地方有:
陆瑶:方程这一单元,里面有一个等式是我学过的,但是这里面有一个未知数。
天奕:把一个没有余数的算式,加、减、乘、除都可以,把一个数变成“x”,这就是方程。
李好:我发现用x表示一个未知数,是我们低年级下学期学过的知识。(用字母表示数)可那学期学的字母是求不出来的,可这里的字母却是求出来的。
小睿:像2+1=3、3-1=2这样的式子叫等式,其实我们在一年级时就已经认识了等式。
萱萱:我知道有一些数量关系式可以让我们求出未知数:减数+差=被减数、被减数-减数=差、被减数-差=减数、积÷乘数=乘数、乘数×乘数=积、除数×商=被除数、被除数÷除数=商、被除数÷商=除数。
小立:比如8+○=19,那么求○是多少,只需要用19减8,○是11,在这里是一样的,只不过把○换成了x。
我无法想象我独立备课或与其他老师集体备课是否会有这么具体生动的教学资源,反正在我课前浏览的那么多教育网站中,没有搜索到这些鲜活的内容。这些来自孩子真实的“最近学习工作区”的声音,不正是课堂教学之“源”吗!
2、孩子们认为不懂的地方有:
秦秦:如果x+3<100,那x是多少?
戴戴:方程为什么含有未知数?
小雯:x可以表示未知数,那么abc可以表示未知数吗?
干干:方程一定要有等式才可以成立吗?范老师,我妈妈有时看到我一些难题不会,就写什么x的,我终于知道了方程。
小雨:方程是用来解决什么问题的?面积问题,数量关系……
我很欣赏小雨的问题,这正是知识之“流”呀!因为它道出了学习方程的意义是什么?我们学习它,到底用它来解决哪类问题?小雨的问题,提醒我在教学目标设定中,一定要让孩子们学完这个知识后,拥有这样的判断力,思考力。
清儿:等式和方程有什么不同,那它们又是什么关系呢?
炜炜:不明白等式和方程有什么区别。
不少孩子问这个问题,说明对于式子、等式和方程的逻辑关系,学生需要老师的引导帮助!
晓哲:怎样才能算出未知数?
呵呵,小家伙们总是思维敏捷,总是透过窗户,看到更远的风景。
小楠:方程可以有大于号、小于号吗?
课上交流以后,相信孩子们会有正确的认识。
小叠:有没有乘法方程式?
通过翻阅孩子们的备学,我发现,不仅老师需要知道数学知识的“源”与“流”,学生也有能力发现数学知识的“源”与“流”。在发现的过程中,学生不断思考,回想,建构合理的认知结构,同时思维向青草更青处漫溯。
备学以后的讨论更有意思:
小璜益:方程不是一个完整的等式,因为有一个数是多少还不知道。
萱萱:我爸爸在教我做一些课外题时,他用的就是方程。
小叠:方程里用x来替代数字。
孩子们聊到兴头上的时候,有个孩子问,怎么才能知道方程里的未知数是多少?我说,你们随便考考我,我都知道。
小岩:x+100>120。
小欣:这个不是方程,方程必须是等式,这个不是等式。
小恺:x+110=210。
小欣把110听成了120,就说,x等于90。
孩子们一片疾呼:x等于100呀!!!
还有几个孩子站起来振振有词的解释x等于100的原因。
呵呵,意外的听错数字,却让我看到了孩子有极强的学习能力,还没有教,其实他们已经有了一些经验。这些现象,又将成为下一场备学的起点。
每节课的开始,找到一些结点,让孩子们动起身心,铺一些知识小路,老师顺着孩子的思维去引导他们创造,探究,发现,总结,体会数学的简洁与抽象,发展自己思考的能力,那样的学习交流,是我所追逐的样子。
听听孩子们对备学的感性体会:
小欣:备学就像是吃饭前的开胃菜,帮助我们更好的去吃饭,吸收菜里的营养;备学就像是砍柴前磨了的刀,使砍柴更加轻而易举,更方便;备学就像是活动前的热身,使活动更加安全、快乐。备学给了我们一篇倾诉的天地,备学给了我们一个展示的舞台。我爱备学。
小涵:我觉得备学就像一颗知识的种子,当我们开始新一学期的备学旅途,就是在给这颗种子浇水、施肥,让它快快长大。当我们结束了一学期的备学后,这颗种子就长大了,长成了参天大树,树上的果实非常多,各有千秋。这些果实,就是我们每天记下的备学,备学后的与同伴交流所得的收获,就是我们努力后的回报。
奕奕:对我来说,备学就像是老师的备课,为了明天的课程而做准备,就像海棠花,冬天积蓄力量,到春天抽出枝条,绽放美丽。
备学,点击着孩子数学世界的“源”与“流”,更点击了一份学习数学的快乐与乐趣,孩子们享受备学,享受数学。