分数与除法的关系是在学习了分数的意义后进行的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以沟通分数与除法的联系至关重要。
一、成功之处
1.恰当铺垫,有利于分散难点。
为有效地分散算理,教学中设置的教学情境,以比较简单的题目形式分层呈现,比如:将3块月饼平均分给4个小朋友,每个小朋友得多少块?将1块月饼平均分给3个小朋友,每个小朋友得多少块?……在该环节中,教师可借助实物操作着重引导学生理解:把1块月饼平均分成4份,其中的每一份都是这块月饼的1/4,也都是1/4块,通过结合生活实际的一些数据较小题目的出示作为铺垫,可以帮助学生更好地认识分数与除法的联系。
2.实际操作,感悟新知识。
《数学课程标准》指出:“数学教学,要让学生亲身经历数学知识的形成过程。”也就是经历一个丰富、生动的思维过程,在教学中,在一块月饼平均分给四个小朋友,求每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。在解决把3张饼平均分给4个小朋友,每个小朋友分得多少的问题时,由于问题难度增加了,所以我就请他们四人一小组想办法,进行动手操作尝试,并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义:即每人分得1张饼的四分之三,也可以说是3张饼的四分之一。通过这样两次动手操作的过程,学生充分理解算理,他们在自己的尝试、探究、猜想、思考中,不断解决问题、再生成新的问题,为探究分数与除法的关系搭建了沟通的桥梁。
3.鼓励发现,探索分数与除法的'关系。
探索是学生亲自经历和体验的学习过程,引导学生观察1÷3=1/3?? 3÷4=3/4这两道算式,鼓励他们想一想:①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?②用分数表示商时,除式里的被除数,除数分别是分数里的什么?③分数与除法的关系是怎样的?以问题为主线,一步一步地引导学生归纳出了分数的意义,理解了分母、分子的含义。
二、改进之处
1.分数与除法的区别没有理解透彻。
虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有学生自己总结出来,剩下的时间比较仓促,只能由我帮助引导学生总结出两者的区别,即:除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。这部分内容下一节课应予以强调。
2.小组操作参差不齐。
在小组合作进行把3块饼平均分给4个人时,有的小组合作的效果较好,但有的小组并没有领会3/4块是怎么得到的,3个1/4块是3/4块,3块的1/4是3/4块,分数的这两种意义个别学生没有理解透彻。
针对本课的不足之处,下一节课将进一步弥补,期待学生将分数与除法的联系和区别掌握牢固。
【《分数与除法》数学教学反思】相关文章:
5.分数除法教学反思