岩土塑性力学教学课件(2)

2018-07-21教学课件

 5.结论

  (1)广义塑性力学消除了经典塑性力学中的传统塑性势假设、正交流动法则假设与不考虑应力主轴旋转的假设,从固体力学原理直接导出了广义塑性位势理论。

  (2)广义塑性力学是基于分量塑性势面与分量屈服面的理论,能反映应力路径转折的影响,即应力增量对塑性应变增量的影响。

  (3)广义塑性力学中的塑性势面是已知的,因而它不会产生当前非关联流动法则中任意假定塑性势面引起的误差。

  (4)广义塑性力学中要求屈服面与塑性势面对应,而不要求相等,避免了采用正交流动法则引起过大剪胀等不合理现象。由于它对屈服面硬化参量的选定有严格的规定,保证了岩土材料在一定应力路径下求解的惟一性。

  (5)广义塑性力学中,按土性及其状态不同,体积屈服面可分为压缩型、硬化压缩剪胀型与软化压缩剪胀型三类,并依据试验首次提出了压缩剪胀型土体的体积屈服面,可以科学地考虑土体的压缩与剪胀。剪切屈服面分为方向的剪切屈服面,一般情况下可略去

  方向的剪切屈服面而只考虑剪切屈服面。

  (6)广义塑性力学采用分量塑性势面与分量屈服面,各屈服面都有各自与塑性势面相应的硬化参量。文中给出了广义塑性力学的硬化定律和应力—应变关系。

  (7)在应力增量分解的基础上,建立了考虑应力主轴旋转的广义塑性位势理论,从而可求出应力主轴旋转产生的塑性变形。

  (8)通过分析屈服面的物理意义,表明屈服条件是状态参数,它与应力状态、应力历史及材性等状态量有关;同时也是试验参数,只能由试验给出。

  (9)广义塑性力学不仅可以作为岩土材料的建模理论,而且还可以应用于诸如极限分析等土力学的诸多领域,具有广阔的应用前景。

上一篇:自然之道的教学课件下一篇:风景色彩教学课件