人教版六年级下册数学教案

2021-08-02教案

人教版六年级下册数学教案模板锦集7篇

  作为一名无私奉献的老师,总归要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那么应当如何写教案呢?以下是小编收集整理的人教版六年级下册数学教案7篇,仅供参考,欢迎大家阅读。

人教版六年级下册数学教案 篇1

  (1)两个质数的和是39,这两个质数的积是( )。

  分析 本题考查的是质数的意义及数的奇偶性等知识。

  两个数的和是39,说明这两个数一个数是奇数,一个数是偶数,因为它们都是质数,所以其中的偶数只能是2,则奇数是39-2=37,37×2=74。

  解答 74

  (2)120的因数有( )个。

  分析 求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把120分解质因数:120=2×2×2×3×5,然后借助每个因数的个数来计算。因数2的个数是3个,因数3的个数是1个,因数5的个数也是1个,120的因数的个数为(3+1)×(1+1)×(1+1)=16(个)。

  解答 16

⊙探究活动

  1.课件出示题目。

  (1)一个长方体木块,长2.7 m,宽1.8 m,高1.5 m。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?

  (2)学校六年级有若干名同学排队做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年级最少有多少人?

  2.明确探究要求。(小组合作、思考、交流)

  (1)这两道题分别考查什么知识?

  (2)怎样解决这两个问题?

  (3)具体的解答过程是怎样的?

  3.汇报。

  (1)先汇报前两个问题。

  预设

  生1:第(1)题考查的是应用因数的知识解决问题的能力。

  生2:第(2)题考查的是应用倍数的知识解决问题的能力。

  生3:根据题意,正方体的最大棱长应该是长方体长、宽、高的最大公因数,所以先把相关长度转换单位,用整数表示,然后求长、宽、高的最大公因数。

  生4:根据题意,六年级人数比3、7、11的最小公倍数多2,所以先求出3、7、11的最小公倍数,再加2就可以了。

  (2)尝试解答。(关注学生求三个数的最大公因数或最小公倍数的情况,发现问题并及时点拨)

  (3)汇报解答过程。(指名板演,集体订正)

  预设

  生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因为27、18、15的最大公因数是3,所以正方体的棱长最大是3 dm。

  生2:因为3、7、11的最小公倍数是3×7×11=231,231+2=233(人),所以六年级最少有233人。

  4.小结。

  解答此类问题,关键要弄清考查的是因数的知识还是倍数的知识,同时要会求两个或三个数的最大公因数及最小公倍数。

⊙课堂总结

  通过本节课的学习,掌握了因数与倍数的相关知识,我们学会应用这些知识解决实际问题,学以致用。

⊙布置作业

  教材75页5、9题。

  板书设计

  因数、倍数、质数、合数

  因数和倍数质数——质因数合数——分解质因数1公因数互质数最大公因数倍数——公倍数——最小公倍数能被2、5、3整除的数的特征。

人教版六年级下册数学教案 篇2

  课前准备

  教师准备 PPT课件

教学过程

  ⊙提问导入

  1.提问激趣。

  根据“甲是乙的”,你能想到什么?

  预设

  生1:乙是甲的。

  生2:甲比乙少,乙比甲多。

  生3:甲是甲、乙之差的5倍。

  生4:甲是甲、乙之和的。

  生5:乙比甲多20%。

  ……

  2.导入新课。

  这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

  ⊙回顾与整理

  1.分数(百分数)的一般应用题。

  (1)分数(百分数)乘法应用题的特征及解题关键各是什么?

  ①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

  ②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

  (2)分数(百分数)除法应用题的特征及解题关键各是什么?

  ①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

  ②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

  (3)分数(百分数)应用题的常见题型有哪些?如何解答?

  ①求甲是乙的几分之几(百分之几):甲÷乙。

  ②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

  ③已知甲比乙多(少)几分之几,求甲:乙×。

  ④已知甲比乙多(少)几分之几,求乙:甲÷。

  ⑤求百分率。

  发芽率=×100%

  小麦的出粉率=×100%

  产品的合格率=×100%

  出勤率=×100%

  ⑥求利息:利息=本金×利率×时间

  2.分数应用题的特例——工程问题。

  (1)什么是工程问题?

  明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  (2)解决工程问题的关键是什么?

  明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

  (3)工程问题的数量关系式有哪些?

  预设

  生1:工作总量=工作效率×工作时间

  生2:工作效率=工作总量÷工作时间

  生3:工作时间=工作总量÷工作效率

  生4:合作时间=工作总量÷工作效率和

人教版六年级下册数学教案 篇3

  教学内容:

  例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。

  例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。

  例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。

教学目标:

  1.通过学生观察、探索,使学生掌握数线段的方法。

  2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。

  3.培养学生归纳推理探索规律的能力。

重点难点:

  引导学生发现规律,找到数线段的方法

  教具学具:

  多媒体课件

教学指导:

  1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。 探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法

  2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答

  3.探究例7时,必须先让学生仔细读题,理解题意。

教学过程:

  一、复习回顾,游戏设疑,激趣导入。

  1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

  2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

  新知学习

  二、逐层探究,发现规律。

  1.从简到繁,动态演示,经历连线过程。

上一篇:关于人教版六年级下册数学教案锦集9篇下一篇:人教版六年级下册数学教案锦集六篇