说课稿

2021-06-13图片

【推荐】说课稿三篇

  作为一名优秀的教育工作者,常常需要准备说课稿,通过说课稿可以很好地改正讲课缺点。那么问题来了,说课稿应该怎么写?下面是小编帮大家整理的说课稿3篇,希望能够帮助到大家。

说课稿 篇1

  尊敬的各位领导、老师,大家上午好!我今天说课的内容是人教版三年级上册第七单元第四课时的内容:“长方形和正方形的周长”。下面我将从四个大的板块来进行说课:

一、说教材

  (一)教材分析

  本节课是在学生认识四边形,研究了长方形、正方形的特征和了解了周长的概念的基础上进行学习的。学好这一内容将为今后长方形、正方形的面积,其它图形的周长以及立体图形长方体、正方体的学习打下良好的基础。

  (二)教学目标

  根据教材和学生的认知特点,我拟定的教学目标是:

  1、使学生巩固应用周长的含义,探索并发现长方形、正方形的周长计算方法。

  2、培养学生观察、推理、分析、综合、抽象、概括的能力和解决实际问题的能力。

  3、让学生充分体验数学与日常生活的密切关系,培养生活的数感。

  4、通过合作学习,培养学生积极探究、大胆尝试的自主学习能力和同学间协作互助的精神。

二、说教学重难点。

  根据以上分析,我认为本节课的重点:会推导、归纳长方形和正方形周长的计算公式

  难点:能灵活运用长方形、正方形周长的计算方法解决生活中的数学问题。

三、说教法。

  为了实现本节课的教学目标,突破重难点,我根据读讲精练教学法的理念运用了以下教学策略:

  1、创设故事情景,激发学生的学习欲望

  2、引导学生观察、发现,在合作交流中掌握知识

  3、充分运用课件、学具的辅助作用,巩固知识

  4、注重学生能力的培养、习惯的养成和个性的张扬

四、说教学过程。

  为了实现本节课的教学目标,突破重难点,我设计了五个环节:设疑激趣,引入新课;自读引导,探究新知;系统整理,明确算法;分层精练,巩固达标;抒发感受,心灵对话。

  (一)设疑激趣,引入新课

  首先为学生创设探究学习的情境,提出问题。在问题的召唤下,唤起学生主动参与学习、探索新知的动机,我创设了同学们都熟悉的龟兔赛跑的情景,小兔子和小乌龟因为路线不同发生争执,通过观察学生发现了小兔子的路线是长方形的,乌龟的路线是正方形的,那么他们的路线长短到底相不相同呢,引导学生说出:“要想知道它们的路程长短实际上就是求长方形、正方形的周长”,直接引出课题。

  (二)自读引导,探究新知

  1、为了探索长方形周长的计算公式,我设计了自主学习、独立尝试、小组交流、总结归纳、巩固练习五个环节。

  2、利用周长的定义,让学生独立算出小兔子所走的路程,使学生真正成为学习的主人。

  3、在自主探索后,充分发挥小组学习优势,学生会得出3种算法:

  ①6+4+6+4=20(米)

  ②2x6+2x4=20(米)

  ③(6+4)x2=20(米)

  结合多媒体课件演示引导学生说出这三种方法中哪种方法最好,从而概括出长方形周长的计算公式(长+宽)×2=长方形周长,在此基础上,反问:要求长方形的周长必须知道什么?

  2、接下来是探索正方形周长公式,有了前面探索长方形周长的铺垫,本环节我完全放手给学生,所以我设计了四个环节:一、尝试计算,二、交流汇报,三、总结归纳,四、巩固练习。由于正方形的四条边长度相等,所以在试算中学生很容易得出:5+5+5+5=20(米)。5x4=20(米)。通过比较学生很容易看出哪种算法简便,重点让学生说出5和4分别代表什么,从而得出正方形的周长=边长×4。

  (三)分层精练,巩固达标

  新课标指出数学学习要联系生活实际,学有用的数学。在本节课中的练习安排我注重层次性,渗透多样性。让不同的学生获得不同的发展。因此为了实现本节课的教学目标,我通过出示兔子日记,设计了"闯关"游戏,激发了学生运用知识的激情。第一关是让学生计算已知长和宽的长方形的周长,使学生明确计算周长的必要条件,既培养了孩子的动手操作能力,又培养了孩子的数学思维能力;第二关是已知边长求正方形周长公式的练习;第三关是解决生活中的实际问题,设计的是正方形周长公式的变式练习,注重考察学生对周长计算方法的灵活运用。设计的三个问题,通过形式多样的练习,让学生以多种方式、多种感官参与活动,培养孩子灵活运用所学知识解决问题的能力。

  (五)抒发感受,心灵对话

  让学生用简洁的语言交流本节课的收获,给学生提供自我感悟,自我评价的时间与空间,有利于培养学生概括、总结能力,让学生在轻松愉快的氛围中完成这节课的学习。

说课稿 篇2

  一、说教材

  1、教学内容

  本课是《义务教育课程标准实验教科书》(北师大版)数学五年级下册第25页到26页的内容。

  2、教材分析

  这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把 平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是 ÷2,被除数 的分子是能被除数整除的,而第(2)题的算式是 ÷3,被除数 的分子是不能被3整除的。无论哪一种方法,目的都是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

  教学目标:

  根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:

  知识与能力目标:理解分数除以整数的意义,掌握分数除以整数的.计算方法,并能正确计算。

  过程与方法目标:通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。情感、态度与价值观目标:通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

  教学重点:

  定位为理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:

  定位为分数除以整数计算法则的推导过程。

  3、教学准备

  为了更好地对本节课进行教学,课前我准备了多媒体课件、长方形纸等。

二、说教法与学法

  根据新课标的要求和本节教学实际,在设计本课教学时我主要突出以下几点:

  1、在注重算理和算法教学的同时,体现估算。

  《数学课程标准》对计算教学有明确的要求,即淡化笔算、重视口算、加强估算。分数除以整数是学生今后继续学习的重要基础,在教材中占有重要的地位,但在现行教材中对估算意识的培养还未凸显出来。针对这一现象,我力求把培养学生的估算意识,发展学生的估算能力融入教学,在课堂上形成具体的教学行为,从而加以体现。

  2、以探索为主线,鼓励学生算法多样化。

  学生是课堂教学中的主体,将更多的时间、空间留给学生,是调动和发挥学生主体意识的重要途径之一。从问题的提出,就让学生主动参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。

  3、让学生充分评价和反思。

  在教学过程中要引导学生加以评价,加强反思。当学生探索出多种算法后,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种算法是否更具有一般性,普遍性。

  为了达成上述目标,在本节课中我将贯彻“以学生为主体,教师为主导,训练思维为主线”的教学原则:

  1、自主探究、寻求方法

  让学生充分自主探究、寻求分数除以整数的意义和计算方法。

  2、设计教法体现主体

  课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。

  3、分层练习、注重发展

  练习有层次,由尝试练习到综合练习到发展练习,层层深入。

三、说教学过程

  根据以上的教学理念,结合本课的特点,我把本课的教学程序设计为以下三个层次进行教学:

  第一层次:教学分数除法的意义。

  通过多媒体课件创设情境涂一涂,得出分数除以整数的算式 ,让学生理解分数除法的意义和整数除法的意义相同。

  第二层次:大胆猜想分数除法的计算方法。

  这个算式的特殊性在于分子能够整除整数,学生容易理解分数除法的意义并找到特殊的计算方法,因此放手让学生大胆猜想分数除法的计算方法,再利用多媒体课件操作探究,使学生理解分数的分子能被整数整除时,可直接去除;并举例操作验证这一算法。

  第三层次:激发矛盾,再次探究。

  让学生用探索到的方法来计算 。此时学生发现分子除以整数除不尽,分子除以整数的方法不适用。知识矛盾的冲突引发学生进一步观察和思考,并再次利用多媒体课件操作探究,从特殊到一般,探索新的计算方法。

  具体教学环节设计如下:

  (一) 旧知复习,蕴伏铺垫

  复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

  1、展示问题:

  (1)什么是倒数?

  (2)你能举出几对倒数的例子吗?

  (3)如何求一个数的倒数?

  【设计意图】本节课的内容是以倒数为基础的。分数除以整数的计算方法与倒数紧密联系,因此,在引入新课之前,带领学生系统深入地复习倒数的相关知识是很有必要的。

  2、展示多媒体:笑笑和淘气去买白糖。

  问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

  问题2:这些白糖一共重2千克,每袋白糖有多重?

  问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

  【设计意图】本环节设置了一个“买白糖”的具体情境,并展示了三个层层递进的问题,在帮助学生复习整数除法的同时,引出了本节课的主要内容——分数除以整数。由于设置了三个递进的问题,学生不会觉得问题3的提出很突然,并且,由于有了问题2的铺垫,列出问题3的算式也较为容易。

  (二) 创设情境,理解意义

  展示多媒体:

  把一张纸的 平均分成2份,每份是这张纸的几分之几?

  让学生自主思考解决这个问题。学生利用事先准备好的纸,先把纸平均分成7份,再涂出其中的4 份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。在汇报反馈时,将学生的思维过程展示出来,即分、涂的过程。使每位学生都能在清晰地展示中分享他人的思维方法。通过思考操作学生达成共识: 里有4个 ,平均分成2份,每份就是2个 ,是 。接着让学生列出算式 ÷2= ,在探究过程中,学生同时理解了分数除法的意义。

  (三) 大胆猜想,举例验证

  学生通过操作,明白 是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。这种方法是否具有普遍性呢?教师让每位学生举例验证,通过分一分,涂一涂证明结论。

  【设计意图】大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。科学的验证可不仅仅是一两道题就能得出结论,数十名同学会举例出数十道不同类型的分数除法算式。而其中有些算式是分子除以整数除不尽的。

  (四) 激发矛盾,再次探究

  学生很快发现有些算式是无法用以上结论计算出来的,如 ÷3,分子4除以3是除不尽的。矛盾的引发,说明“分母不变,被除数的分子除以整数得到商的分子”这样的计算方法不具有普遍性。我引导学生再一次进行探究。为了便于全班统一交流,我选取学生举例中的一道典型算式进一步研究,如 ÷3,此时,先让学生动手分一分、涂一涂,然后再让他们进行小组交流。

  【设计意图】苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。

  根据学生的小组讨论,学生发现把 平均分成3份,每一份就是这张纸的 。得到的算式是 ÷3= 。此时我还引导学生发现:把 平均分成3份,这其中的一份实际上就是 的 ,而求一个数的几分之几可以用乘法来计算,算式是 × = 。比较两个算式,学生很快发现它们是相等的。由此,学生再一次得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

  【设计意图】这一环节,我引导学生根据乘法的意义来解决分数除法的计算方法,即将新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。这一环节主要也是学生自己发现,学生的主体地位得到尊重,从被动接受知识为主动探索,学生学习的过程变得精彩而不在枯燥无味。

  (五)再次验证,分层练习

  多媒体出示:

  1、 3/5÷3 =; 3/4÷4= ;4/11 ÷5=; 8/9÷6=; 6/7÷8=; 4/15÷12=;

  2、 ( )×9=1/3 ;8×( )=; 5×( )= 4/3;( )×5= 1/2;( )×2= 4/5;4×( )= 1/4;

  3、找规律填数: 8/9,4/9,( ),1/9 ,1/18,( )。

  【设计意图】一个新的计算结论必须反复验证。让学生通过实际运算再次验证一个分数除以整数的意义和计算方法,学生在不断地思考与验证中,发现了第二种计算方法的普遍性,也深刻理解了分数除法的计算算理。

  以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,也是新理念的挑战,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的整合。

四、说板书设计

  把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?

  把一张纸的 平均分成3份,每份是这张纸的几分之几?

  除以一个整数(零除外)等于乘这个整数的倒数。

  【设计意图】这样的板书设计集条理性、科学性、整体性和概括性为一体,有利于学生将教材的知识结构转化为学生头脑中的认知结构,能够体现出新旧知识的密切联系。

上一篇:物理说课稿三篇下一篇:有关美术说课稿范文十篇