DSAR进展趋向探讨性论文

2020-04-14实用文

  DSAR迭代处理结构

  DSAR针对未知深空信道传输环境,分别需要识别、估计和检测接收信号的解调参数,用于获取信号承载的信息。但在低信噪比深空传输环境下,信号参数的估计和检测往往存在循环嵌套和互为前提的问题,不能轻易分离各个参数的识别和估计过程。如对于信号解调中的载波频率与相位两个参数,它们的估计互为前提:相对准确的另一方参数估计,将有助于该参数自身的精确估计。反之,除非进行更大复杂度的二维参数同时估计,否则不能有效地依次实现该两个参数的精确估计。因此,如何确定参数估计的合理次序,并采用若干工程实现技巧,对于构造整个自主无线电参数估计的体系结构将非常关键。目前,JPL提出了自主无线电参数估计的总体系统模型,并分别论述了该模型所需解决的参数识别,检测,解调等关键技术[2]。但大部分参数估计方法,都需要预先得知某些参数,从而距DSAR复杂传输环境的工程应用还有较大差距。特别是该模型将直接面临低信噪比传输的难题,直接导致传输过程的解调门限不够,而无法进行后续有效译码等处理,而使通信失效。中科院空间中心也提出了自主无线电参数估计的迭代层次模型,给出了解决该问题较好的工程实现结构[3]。它首先将信号检测和处理的各个过程进行细化分层,按各个参数的识别、粗估计到精估计的层次进行混合处理:通过不同处理层间进行的参数估计信息的交互、反馈和迭代处理,能有效地实现未知信号由粗到精的自主识别,接收和处理。但该方法要达到实用还需解决以下问题:优化参数估计算法,即在保证参数估计性能的前提下,尽量降低算法的实现复杂度;保证层间参数估计所传递消息的可靠性,避免错误消息的反馈导致的误差传播与放大,以确保整个系统解调参数估计和检测的收敛和正确。

  DSAR系统中信号参数的估计和检测,主要包含以下6个层次:调制指数估计与识别、载波频率估计与补偿、调制方式识别,载波相位跟踪,信噪比(SignaltoNoiseRatio,SNR)估计及载波频率跟踪以及帧同步与信道译码处理。针对互为前提的循环信号参数估计及其精度问题,还需针对参数估计效果,划分估计阶段为粗估计及精估计两个部分。而且,还需结合各参数估计误差对系统性能影响的情况,设置各参数的合理估计顺序,来获得较好的联合参数估计和检测的迭代层次结构。因载频偏差对系统影响相对较大,故对其估计和补偿要先于符号定时、相位偏差等其他参数的估计和补偿。符号定时偏差估计受载波相偏等的影响较小,且其估计算法复杂度也相对较低,故对其估计需先于载波相位等参数估计,从而避免多维参数同时估计所带来的巨大复杂度。最后,整个DSAR系统中的参数估计过程,可先进行调制指数等参数的识别、粗载波频率、粗相位偏差,粗SNR等参数的粗估计。然后,将这些解调参数进行补偿,并进一步将其估计与编码的迭代译码过程相结合,通过它们之间的参数估计与译码外消息之间的联合消息传递与反馈,实现整个DSAR系统的联合迭代译码和精参数估计及其补偿。

  最后,DSAR系统的迭代信号处理结构模型如图1所示:图1所示的模型是一个具有4层迭代信号处理结构DSAR系统的迭代参数估计与检测模型。其层次结构分别如下:第1层为调制指数等参数估计层;第2层为粗载波频率估计层;第3层包含数据速率、SNR、脉冲形状及粗符号定时等参数的混合估计层;第4层为解调所需精、粗载波频率、精定时和载波相位等参数的混合估计层;第5层帧同步估计层;第6层信道译码层。每层估计结果均以迭代处理软信息的形式发送至下一层。下一层消息也可依次向上一层或更高层进行处理消息的反馈。另外,同层间的消息传递也可横向或纵向处理,实施最佳参数估计次序,完成整个系统最佳的消息迭代传递的管理和控制。如初始解调参数估计工作在性能较差但对信道参数前提要求不高的非相干状况,以便获得粗估计和检测结果。一旦系统获得粗载波相位信息,就可将工作模式转换为相干解调方式,从而提高解调性能。第3、4层内参数之间的联系比较紧密,需采用联合的横向或纵向协同参数估计与检测予以实现。另外,在对第4层内的参数进行精估计时,还可进一步将判决可靠性较高的信道译码软、硬判决信息,来分别反馈辅助这些解调参数的精估计。反过来,该过程也将提高输入到译码器进行译码处理的解调后信号的可靠性,提升译码性能。即采用该联合协同解调与译码的方法可获更高精度的参数估计。而且,该更高精度的参数估计结果,也进一步促进译码的可靠性,形成了一个较好的解调与译码协同处理的循环,大大减少了不必要的信息处理损失。最终,该迭代信号处理结构可有效实现整个DSAR系统的联合参数估计与信道译码,并获得较好的深空通信效果。

  另外,在深空通信中,DSAR的关键问题是如何快速实现中断后深空通信链路的重建,以提高传输效率[5]。当前主要问题是快速捕获,并实时跟踪深空无线电信号的参数。如对采用高功率效率MSK调制和高编码增益LDPC编码构成的系统,可先用周期频谱或快速傅立叶变换等频率粗估计算法,进行载波频率的快速粗估计。另外,通过增加一小段差分的前导训练字后(也符合LDPC等现代分组信道编码需要帧同步的要求),可分别将信号传输的调制模式设置成相干或非相干两类载波解调方式[5]。首先,可利用一小段前导的训练字用非相干解调实现快速的符号定时同步等的差分解调。因差分解调无需精确的载波同步等解调信息,无需进行多维联合解调参数的估计,大大简化了整个解调的实现过程。故该结构较好地解决了自主无线电参数估计的循环参数检测与估计的嵌套问题。因此,在该阶段,可用非相干解调及较短的前导训练字数据及一些定时估计的盲算法用于实现粗定时估计。之后,因相干解调可获得更好性能,可将自主无线电系统的工作模式切换到相干解调方式,用传统的锁相环、平方环、判决反馈环等闭环工作方式。同时,对载波频率相位偏差、SNR估计等同步和信道状态参数进行粗估计,并用前导训练字数据用于帧同步,实现LDPC码等分组码的译码比特次序对齐。

  最后,实现联合LDPC译码与解调和信道解调参数的估计:通过LDPC译码软信息的高可靠性,迭代反馈并获得精解调参数的检测和估计。即进行更高精度的联合解调译码及其相关同步和信道状态参数的跟踪,以完成整个深空通信链路的快速有效重建。但在该联合译码解调过程中,如发现粗解调参数估计有误而不能满足LDPC校验矩阵的检验,还需及时将该错误标记反馈给参数粗估计算法,重新开展粗估计和信道参数检测的大闭环的工作。因此,对于整个自主无线电的实现,需要合理排序整个自主无线电接收机系统的解调参数估计和检测次序,实现传统解调与迭代译码、参数的粗、精估计的有机协同结合,以获得最佳的估计速度与估计精度的折中。

上一篇:智慧银行建构思路探讨论文下一篇:搞好小城镇建设的探讨论文