大学物理课程教学改革研究论文

2020-06-17实用文

  传统的《大学物理》课程教学缺乏专业针对性、教学内容陈旧、课程体系单一,已不能适应应用技术型人才培养的要求。针对《大学物理》课程教学中遇到的这些问题,本文从教学内容、课程体系、教学方式和考核评价体系几个环节进行教学改革研究,以期促进新形势下《大学物理》课程的教学。

关键词:应用技术型人才;转型发展;大学物理课程;教学改革

  国家经济发展方式的转变、产业结构的转型升级需要大量高素质、多样化的应用型人才,向应用技术型高校转型是新建地方本科院校走向内涵式发展的必然选择和重大机遇。在向应用技术型大学转型的背景下,各新建地方本科院校突出了“应用型”办学定位[1]。然而,目前多数新建地方本科院校仍然沿用传统的大学物理教学模式,侧重理论知识的教学,对不同专业未加以区分,在教材选用、教学内容、授课方式和考核评价等方面仍采用同一标准。不同专业有不同的特点和人才培养目标,对大学物理课的教学的需求也不尽相同,缺乏专业针对性的大学物理教学模式显然已不适合新形势下应用型人才综合素质培养的要求。因此,如何将大学物理与各理工科专业有机结合,进行具有专业针对性的大学物理课程教学模式改革的探索与实践具有重要的意义。

1.目前大学物理课程设置中存在的问题

  1.1大学物理课程与理工科各专业其它课程结合度差

  目前,多数新建地方本科院校各理工科专业使用统一的大学物理教材,与各个具体的专业结合不够紧密,专业针对性差。虽然大学物理是理工科各专业的公共基础课,但各专业有各自的专业特色和要求,因此对大学物理课的要求也不尽相同[2]。大学物理课程缺乏专业针对性容易使学生产生物理无用论的错觉,认为学习物理对专业知识、课程的学习没有帮助,学习积极性不高,学习效果差。

  1.2教学内容陈旧,较少体现现代性和专业针对性

  当今社会科技发展日新月异,物理新知识、新技术不断涌现,为其它学科的进步奠定了重要的理论和物质基础,推动了诸如信息科学、材料科学、生命科学以及农业科学等学科的进步。然而目前多数新建地方本科院校使用的物理教材,教学内容陈旧,侧重于经典物理学中的力学、热学、振动和波动光学以及电磁学基本知识和理论的教学,较少涉及高新技术、科技在现实社会中的应用,同时缺乏专业针对性,对与信息科学、材料科学以及生物科学等学科关系紧密的激光信息技术、量子通信技术、同步辐射核磁共振波谱技术、新型显微技术、混沌理论和耗散结构等鲜有介绍。

  1.3课程体系结构设置不合理

  向应用技术型大学转型的.大形势下大学物理地位被削弱,大学物理教学面临着学时少而教学内容多的突出的矛盾。目前,大多数新建地方本科院校各理工科专业主要是通过删减教学内容来克服学时少的矛盾,侧重于经典物理知识的教学而对于近现代物理技术及其应用仅作简单介绍或干脆完全删除,在课程体系设置方面则主要还是采用单一的必修课。物理新知识、新技术的发展带动了其他学科的发展,因此,有必要对物理学新进展、新技术及其在各专业中的应用加以介绍。显然,单一的课程结构已不能适应物理学知识的深度与广度上不断发展的趋势,不能满足各理工科专业对物理新知识的需求。

2.改革的具体措施

  2.1优化教学内容、加强专业关联性

  物理学包括经典物理学,近代物理学与当代物理学三个部分。经典物理学主要涉及力学、热学、光学和电磁学等内容,这部分内容的教学对理工科专业学生的科学素养、数理思维以及分析解决实际问题能力的培养具有重要意义。在向应用技术型技术大学转型发展的背景下虽然大学物理的地位被弱化、教学课时被缩减,但笔者认为大学物理中经典物理知识的完整性不应被削弱和破坏,但要结合各专业特点进行优化整合[3]。在学时有限的前提下,那些与专业课程联系不是特别紧密的内容只需围绕物理学基本知识、概念、定律和思想方法进行定性介绍,只要能够使学生建立清晰的物理图像即可,避免繁杂的数学论证和理论推导;而那些对专业课程具有较大影响的内容则要进行重点教学。比如,对于通信工程和电子信息工程类专业的学生,电磁学部分要进行重点教学。对于这些专业的学生而言,《电磁场理论》是一门非常重要的专业课。电磁场和电磁波作为信息的重要载体,在通信领域应用非常广泛,在雷达、遥感、导航等技术领域也有广泛的应用。因此,通信工程和电子信息工程类的学生必须熟练掌握电磁场与电磁波的基本性质、传播规律和传输、辐射、散射的基本理论。作为《电磁波理论》的先导课程,大学物理课程教学时应该突出电磁学部分的教学,重点介绍电磁感应现象和变化的电磁场等内容,使学生对感应定律、自感和互感、电磁振荡、电磁波和电磁波谱的基本理论和规律有充分的认识,为《电磁波理论》的学习奠定良好的基础。对于土木工程类专业大学物理在教学内容上应该侧重于力学部分;而对于石油化工等专业则需要侧重于流体力学和热力学基础定律等知识。近现代物理学与当代物理学前沿知识的教学可以开阔学生的视野,有利于学生创新意识和创新思维的培养。在有限的课时内,需结合理工科各专业的特点从众多物理学新知识和新技术中选择与专业紧密相关的内容进行重点教学。比如对于材料类专业,应选择与材料检测、分析息息相关的电子扫描显微镜、X射线衍射仪、激光超声检测等先进检测技术的原理和方法进行重点教学;对于通信类专业,应选择激光信息技术、量子通信技术、量子计算机和光复用与光放大等技术进行重点介绍。

  2.2完善课程结构,将必修、选修和网络课程有机结合

  各专业的特点和人才培养目标不同,对大学物理课的教学需求不尽相同。因此,需要对大学物理课程体系进行调整,改变单一化的课程模式,丰富大学物理课程体系[4]。根据大学物理教学内容与各专业的紧密程度,可以分成必修、选修和自主学习三个模块。必修模块主要包括经典物理理论基础知识和核心内容,其中重点在于与各专业联系紧密的物理知识,是学生必须掌握的部分,学生通过该模块的学习可以形成基本的科学素养、数理思维以及分析解决实际问题能力;选修模块则侧重于物理知识的延展与应用,主要包括与各专业联系最紧密的物理学前沿知识、技术及其在各专业中的应用,本模块可为理工科各专业学生后续的实践、操作课程奠定理论基础,增强学生的实际动手能力;科技发展日新月异,知识量、信息量剧增,除了通过必修模块和选修模块将经典物理学内容和与各专业联系密切的近现代物理学前沿知识、技术传授给学生,还应优选与专业关系紧密的物理学最新进展,如“高亮度发光二极管”、“超导体与超流体”、“混沌理论”和“熵信息论”等内容制成网络教学视频,供学生根据兴趣和需要自主学习,达到开阔学生视野,培养学生创新型思维的目的。

上一篇:关于三大构成课程教学改革研究论文下一篇:大学体育课程教学有效改革研究论文