冀教版初二数学实数教学计划

2020-06-20实用文

  一、教材的地位和作用

  从《数学课程标准》看,关于数的内容,初中学段主要学习有理数和实数,它们是“数与代数”领域的重要内容。对于有理数和实数,初中学段共有安排三个章节的内容,分别是七年级上册第一章《有理数》,八年级上册第十三章《实数》和九年级上册第二十一章《二次根式》。本章可以看成其后的代数内容的起始章,本章是在有理数的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算。

  本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题。虽然本章的内容不多,篇幅不大,但在中学数学中占有重要的地位,它不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。

二、教学内容分析

  (一)本章知识结构框图

  1.本章知识的内在结构如下图所示:

  2.本章知识的展开顺序如下图所示:

  (二)教科书内容分析

  本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算。

  教科书的第一节是平方根,本节先研究算术平方根,再研究平方根。教科书首先创设一个问题情景,抽象出这个情景中的数学问题,即已知正方形的面积求边长的问题,这是一个典型的求算术平方根的问题,这与学生以前熟悉的已知边长求面积是一个互逆的过程。通过对这类问题的探讨,引出算术平方根,给出算术平方根的概念和它的符号表示,这时教科书所涉及到的被开方数都是完全平方数。接着,教科书设置一个“探究”栏目,要求学生将两个面积为1的小正方形拼成一个面积为2的大正方形,并求出这个大正方形的边长。这也是一个已知正方形的面积求它的边长的问题,由于这个大正方形的面积为2,根据前面学过的算术平方根的概念和表示方法,可以求出这个大正方形的边长是 这样教科书就引进了用根号形式表示的无理数(但暂时不出现无理数的概念),这是教科书第一次出现这样的数。另外,通过学生将两个面积为1的小正方形拼成一个面积为2的大正方形的活动,也使学生感受到无理数是从现实世界中抽象出来的,是一种不同于有理数的数。 出现以后,一个很自然的问题,就是要讨论 的大小。教科书采用夹逼的方法,利用不足近似和过剩近似来估计 的大小,通过一步一步的估计,得到a的越来越精确的近似值,进而指出 是一个无限不循环小数的事实,同时指出 等也是无限不循环小数等,这就为后面认识无理数打下基础。会使用计算器求数的算术平方根是本章的一个教学要求,教科书通过一个例题,介绍了使用计算器求算术平方根的方法。用有理数估计无理数的大小,也是学习本章应该注意的一个问题,教科书结合一个实际例子介绍了用有理数估计无理数的常用方法。至此,教科书讨论了有关算术平方根的内容,包括算术平方根的概念、求法,无限不循环小数以及用有理数估计无理数等内容。接着,教科书设置一个“思考”栏目,对平方根展开讨论。在这个“思考”栏目中,要求学生算出平方等于9的数,通过对这个问题的探讨,找到解决问题的方法,利用这种方法进一步求出平方等于 1,16,36……的数,由此归纳给出平方根的概念,进而引出开平方运算。开平方运算与平方运算是互逆运算,教科书通过举例分析了这两种运算的互逆过程,并用图示进一步说明。最后,教科书结合具体例子,通过具体计算一些数的平方根,探讨了数的平方根的特征,并通过一个“归纳”栏目,要求学生自己归纳给出 “正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”等这些数的平方根的特征。

  教科书第二节是立方根。对于立方根,教科书采用了与讨论平方根类似的方法进行讨论。首先设置一个问题情景,从这个问题情景中抽象出数学问题,就是已知立方体的体积求它边长的问题,这是一个典型的求数的立方根的问题。这样教科书就从这个典型问题引出立方根的概念和开立方运算。接着,教科书类比着平方运算与开平方运算的互逆关系,探讨了立方运算与开立方运算的互逆关系,并通过一个“探究”栏目,学习求数的立方根的方法。在这个“探究”栏目中,要求学生分别计算一些正数、负数和0的立方根,通过这些计算,一方面让学生学习利用立方运算与开立方运算的互逆关系求立方根的方法,另一方面也为下面探讨数的立方根的特征作准备。紧接着这个“探究”栏目,教科书设置了一个“归纳”栏目,由学生归纳给出“正数的立方根是正数,负数的立方根是负数,0的立方根是0”等这些数的立方根的特征。最后,教科书介绍了立方根的符号表示,并利用这种符号表示探讨了立方根的一条性质。

  学习了平方根、立方根以及开方运算后,教科书在第三节安排了实数。本节首先设置一个“探究”拦目,要求学生将一些有理数转化为小数的形式,分析这些小数的共同特点,通过分析发现有理数都可以化成有限小数或无限循环小数的形式,然后指出反过来的结论也成立,即任何有限小数和无限循环小数都是有理数,这样教科书就将有理数与有限小数和无限循环小数统一起来。在此基础上可以指出,像 等只能化成无限不循环小数的数就是无理数,从而引出无理数的概念。教科书采用这种与有理数对照的方法引出无理数,有利于揭示有理数和无理数的本质区别,也有助于学生理解“有理数和无理数统称实数”这个构造性定义。接下去,教科书根据不同的标准对实数进行分类,揭示实数的内部结构。随着无理数的引入,实数概念的出现,数的范围由有理数扩充到实数,在这个扩充过程中,既体现了概念、运算等的一致性,又体现了它们的发展变化。教科书通过几方面的例子说明了这种一致性和发展变化。首先,教科书通过探究在数轴上画出表示 的点,说明了无理数也可以用数轴上的点来表示,并指出当数由有理数扩充到实数后,直线上的点与实数就是一一对应的、平面上的点与有序实数对也是一一对应的;接着,教科书通过设置思考问题,让学生体会,在有理数范围内成立的一些概念(如绝对值、相反数等)在实数范围内仍然成立;最后,教科书结合具体例子说明,有理数的运算(如加、减、乘、除、乘方运算等),以及运算律、运算性质(如交换律、分配律、结合律等)在实数范围内仍然成立,并且可以进行新的运算(如正数和0可以进行开平方运算、任何一个实数可以进行开立方运算)等。

  与原教科书相比,本章内容在原教科书“数的开方”一章的基础上,适当增加了有关实数运算的内容(实数的运算在本套书“二次根式”一章继续学习),说明了平面内点与有序实数对一一对应以及在实数范围内的平移变换等;从内容安排上看,改变原教科书先讲平方根,将算术平方根作为平方根一种特例的做法,而是从实际出发,先讲算术平方根,再将平方根,加强了与实际的联系;在教学目标方面,强调所有学生都应会使用计算器进行开方运算,加强对估算的要求等。

上一篇:冀教版四年级数学下册教学计划下一篇:一年级数学下册教学计划冀教版