光学技术优秀论文

2020-06-27实用文

  光学技术是新兴的技术,对于我们的生活科技有着重要的影响作用。以下是小编为大家精心整理的光学技术优秀论文,欢迎大家阅读。

  摘要:

  光学触摸技术最初是1970年代引入的,最新的突破带来了该技术的复苏。研发者已经能够解决成本、亮环境光下的显示性能,以及组成要素等问题,这里只提及其中的一小部分。本文详细介绍了这些问题是如何解决的;该技术的前景,包括深入了解一下光学触摸系统的几个崭新的发展。

  关键词:

  光学触摸技术;发光二极管;光学传感器

  光学触摸技术最初是1970年代Caroll Touch公司(现在是Elo TouchSystems的一部分)发展起来的,现有不少供应商出售该项技术。和其它的触摸技术相比,光学触摸技术具有很多优点。工业界的很多人都认为,如果没有下面将要提到的两个相当大的缺点,光学触摸技术现在已经成为触摸技术的主流。光学触摸屏技术的最新发展使得光学触摸技术复兴,为其成主流触摸技术奠定了基础。

  引言

  传统的光学触摸系统是在显示器的两个相邻斜面上采用红外发光(IR)二极管(LED)阵列,并在相对的斜面边缘放置光敏元件,用于分析系统、确定触摸动作。LED-光传感元件对在显示器上形成光束栅格。当物体(例如手指或者钢笔)触摸屏幕遮断了光束,就会在相应光传感元件处引起光测量值的减弱。光传感的输出测量值可以用于确定出触摸点的坐标。通常控制器是扫描光传感阵列,而不是同时测量所有的光传感器,因此这项技术有时被称为"扫描IR"。在这项技术的高级版本中,每个光传感器测量来自不止一个LED的光,这使得控制器可以补偿由于屏上不可移动的碎片而引起的光的阻断。

  这项传统的光学触摸技术已经主要用于触摸市场中的相关领域。过去,它的广泛应用由于两大原因曾经受到限制:技术成本比与之竞争的其他触摸技术要高,还有在亮环境光下的显示性能问题。后一个问题是由于背光源放大了光传感元件的背景噪声。在有些情况下,噪声大到无法检测到触摸屏的LED光,导致触摸屏的暂时失灵。这个问题在阳光直射下最为显著,因为阳光在红外区域分布有大量的能量。

  另外,传统的光学触摸技术由于其它的一些技术问题,例如功耗、机械包装约束、分辨率的限制导致系统检测PDA笔等小物体的能力受限等,而没有被手持式触摸屏(例如手机和PDA等)采用。其它技术例如模拟电阻技术由于成本低很多,主导了移动设备触摸屏的市场。

  但是光学触摸的特性还是可取的,代表了理想触摸屏的属性,包括可以去除其它触摸技术都必需的显示屏前的玻璃或塑料层。在很多情况下,这种覆盖层采用透明导电材料,例如氧化铟锡(ITO),这会导致显示屏的光学性能下降。光学触摸屏的这个优势对于很多设备、显示屏供应商来说是极其重要的,因为设备的售出与使用者的感觉质量相关。

  光学触摸的另一个长期需求的性能是传感器的数字输出,相比之下,很多其它的触摸系统是依赖于模拟信号处理来确定触摸位置。这些与之竞争的模拟系统通常需要不停的再校准,对信号处理(增加了成本和功耗)的要求比较复杂,与数字系统相比精确度相对降低;并且由于操作环境引起更长时间使用后系统失灵。

  光学触摸的另一个关键的优点是通常情况下没有手指、笔或其它被识别硬件的直接接触。这就减少了触摸屏由于接触失败、老化、疲劳引起失灵的可能。这与低压力触摸的要求也有关。在一个光学触摸系统中,只要与光束接触就可以了,不需要检测力量或者触发系统。

  最后,光学触摸可以执行同时触摸,这是其它触摸技术难以实现的。尽管同时触摸在过去没有被广泛地发展,近期由于苹果iPhone等新设备引起了关注,它让同时触摸成为用户界面不可或缺的一部分。

  1最新技术提高

  1.1新元件和信号处理的改进

  处理:自从传统的光学触摸系统开始发展,关键元件如LED、光敏二极管、CMoS芯片在性能上有了长足的发展,成本大大降低。产生模塑光学和信号处理算法的技术也有了很大的发展和改进。因此,传统光学触摸技术有了发展,至少与其它也在不断发展的触摸技术相比保持着竞争力。

  1.2改进的光学系统设计

  近期,Elo TouchSystems和IRTouch等公司试图解决光学触摸的背景或环境光问题,主要采用改进边缘(缝隙)设计、光学滤光片和更加复杂的信号处理来增强信噪比。如,红外LED可以通过特定频率调制,光传感器的输出只可以在该特定频率下解调。由此来降低阳光对未调制的红外光的影响。制造商声称的最新产品能承受75~100klx的环境光,表明这些技术在降低光学触摸对日光的敏感度方面有了不错的成就。

  2 新型光学触摸系统

  新元件技术和关键器件的成本降低使得大量崭新的光学触摸系统得以产生。便宜和更尖端的光学系统设计工具的结合,为现有光学触摸系统的设计和制造的再次提出创造了完善的条件。

  现有两大类新的光学触摸系统:一类是取决于光源的,通过阻断来检测触摸的;还有一类是利用环境光,而与光源无关的。另外,这些新系统还可以根据规定光束的遮断,以及通过复杂的信号处理来确定显示器上方图像的触摸点来分类。本文回顾了这些新型的光学触摸系统。

  3 Neonode

  Neonode采用了传统的IR触摸技术,LED以及光敏二极管,关键在于将其微型化以用于手持设备。除了将该技术用于其N2手机,Neonode还将它销售给其他的设备制造商。但是还不清楚该技术是否被其他的手机销售商采纳。该项技术的关键挑战在于斜面的高度。很多手机制造商不断地尝试制造能在顶面齐平或者接近齐平的新元件,他们希望显示器尽量延伸,尽量靠近设备的边缘(使得显示器的尺寸和对多媒体功能的体验都尽可能的大)。参考图2中给出的Neonode N2和苹果iPhone,可以立刻明显发现iPhone屏幕的表面是平滑的,而N2手机屏的表面是凹的。通过对样品的检测,N2的斜高约为1.6mm(包括包装材料的厚度);而iPhone的斜高为0(平滑)。其它妨碍Neonode触摸屏技术在手机市场使用的问题有成本和功耗,都是因为设备中大量的采用光电子元件(LED和光敏二极管)造成的。

  对于这项技术及苹果iPhone的另外一个潜在的挑战是只能用手指触摸的限制。亚洲智能手机制造商更希望能够采用触摸笔输入,以支持字符识别。Neonode N2上的光束间隔比较宽,大约每厘米2.5个光束,手指大约能够覆盖9个光束交叉点。这能节约能量,但是使得触摸笔在触摸屏上无法使用。即使使用大的触摸笔,由于分辨率不够,手写识别还是无法实现。相比较而言,用于iPhone的导电轨迹间隔相对比较窄,大概每厘米25个轨迹交叉点。但是,即便是投射式电容性技术的分辨率更高,它只能支持手指触摸,限制了触摸笔或是戴手套时的使用。所以这个比较结论有待讨论。

上一篇:计算机宽带接入网发展趋势分析论文下一篇:补偿贸易返销合同