钢管混凝土拱桥设计研究的论文

2020-07-04实用文

钢管混凝土拱桥设计研究的论文

摘要:介绍了上海城市轨道交通明珠线特殊大桥-苏州河桥(25m+64m+25m)的三跨中承式钢管混凝土梁-拱组合体系桥的设计特点,施工阶段划分及结构分析过程和施工难点处理措施。

键词:钢管混凝土结构;拱桥;设计与施工;徐变控制;

1概述

  苏州河桥位于上海城市轨道交通明珠线跨越既有沪杭铁路苏州河桥桥位,与苏州河正交。桥梁需跨越苏州河及两岸的万航渡路和光复西路。河道通航标准为通航水位3.5m,Ⅵ级航道,净宽20m,净高>=4.5m;两岸滨河路规划全宽20m(机非混行),其中机动车道宽8m;两侧非机动车道宽各3m;人行步道宽各3m;两岸滨河路机动车道净高>=4.50m,非机动车道净高>=3.50m,人行道净高>=2.5m。桥式采用25+64+25m三跨中承式钢管混凝土梁-拱组合体系桥,桥梁全长114m,宽12.5m。外部结构体系为连续梁,即拱脚与桥墩处以支座连接,内部为由主纵梁、小纵梁和横梁及钢管混凝土拱肋的组合结构体系。

2钢管混凝土拱桥设计

  2.1桥型选择

  本方案设计的主导思想是在现有桥梁结构的技术水平发展的基础上有所创新,桥梁造型与周围环境相协调,桥式方案力求新颖独特,并充分体现现代化大都市的节奏与气派。

  拱桥是一种造型优美的桥型,它的主要特点是能充分发挥材料的受压性能,而钢管混凝土的特点是在钢管内填充混凝土,由于钢管的套箍作用,使混凝土处于三向受压状态,从而显著提高混凝土的抗压强度。同时钢管兼有纵向主筋和横向套箍的作用,同时可作为施工模板,方便混凝土浇筑,施工过程中,钢管可作为劲性承重骨架,其焊接工作简单,吊装重量轻,从而能简化施工工艺,缩短施工工期。

  苏州河桥的桥型方案经过研究分析、结构优化及评估论证,最后采用25+64+25m飞鸟式钢管拱桥的设计方案。以抗压能力高的钢管混凝土作为主拱肋,以抗拉能力强的高强钢绞线作为系杆,通过边拱肋的重量,随着施工加载顺序逐号张拉系梁中的预应力筋以平衡主拱所产生的水平推力,最终在拱座基础中仅有很小的水平推力。拱脚与桥墩的连接由固接改为铰接,以避免由于轨道交通无缝线路产生的纵向水平力和温度应力引起拱脚过大的推力而导致拱脚处混凝土开裂,克服了拱桥对基础的苛刻要求。

  全桥总布置如图1:

  2.2上部结构

  主桥为中承式拱桥,主拱理论轴线为二次抛物线,矢跨比为1:4,其中桥面以下部分采用C50钢筋混凝土结构,截面为带圆角的矩形截面。桥面以上部分采用钢管混凝土结构,钢管截面为圆端形,采用A3钢,钢管壁厚16mm,外涂桔红色漆,内填C55微膨胀混凝土。

  边拱矢跨比为1:7.4,理论轴线为二次抛物线,截面采用钢筋混凝土矩形截面,按偏心受压构件设计。拱上立柱采用圆形截面钢管混凝土立柱,下端与边拱肋固结,上端设聚四氟乙烯球冠形铰支座,与边纵梁铰接。

  主拱每侧设7根吊杆,间距约6.4m,吊杆采用挤包双护层大节距扭铰型拉索,吊杆钢索双护层均为高密度聚乙烯护层(PE+PE桔红色),锚具为冷铸墩头锚。吊杆上端锚固在钢管混凝土拱肋内,下端锚固在横梁底部。

  主拱桥面以上部分共设三道一字型风撑,每侧边拱设三道横撑,主拱设一道横撑,以增加全桥的稳定性。拱座采用钢筋混凝土结构,每墩设两个拱座。通过横撑相连。拱座施工时应预先埋好立柱钢管、主拱及边拱伸入拱座内的钢筋,准确对位。

  桥面系为由边纵梁、横梁、小纵梁及现浇桥面板组成。边纵梁为箱形断面,边孔与边拱肋相接部分及中拱与边纵梁连接部分为矩形断面,采用C50级部分预应力混凝土结构,在恒载及自重作用下为全截面受压构件。横梁采用C50级预应力混凝土结构,全桥共设小横梁15片,端横梁2片,中横梁与边纵梁接合处2片。全桥共设四片小纵梁(全桥通长)与横梁固结在一起形成格构体系。桥面板采用C40级钢筋混凝土板,桥面板采用在格构系上现浇的方法处理。桥面板的钢筋布置应采取防迷流措施。

  桥面排水原则上采用“上水下排”,即横坡加导水槽方式,在桥梁横断面内设0.5%的横坡。承轨台每隔一定的距离断开,向两侧排水。

  桥面上部建筑设施包括混凝土道床及轨道、通信信号电缆支架、隔音屏、防噪柱及接触网腕臂柱。桥面布置有:聚氨脂防水层、0.5%双向排水坡、落水管、承轨台及钢轨、I字形钢筋混凝土柱、防噪屏及电缆支架等。每隔30~50m设接触网立柱一对,每隔1000m左右布置一组接触网锚固立柱。桥上不设人行道及照明。

  支座采用QGPZ盆式橡胶支座和QGBZ板式橡胶支座。

  2.3下部结构

  拱桥主墩基础采用桩基础,将⑨层粉细砂层作为桩基持力层,为满足桥梁上部钢轨对基础沉降的要求,经分析计算比较,采用桩径为D=0.8m的钻孔灌注桩,桩长67m,每个主墩12根桩,承台4.8×17.0×2.0m,边墩基础采用8根桩径D=0.8m钻孔灌注桩,桩长67m,承台4.35×16×2.0m,边墩及盖梁为双柱式钢筋混凝土结构。

3结构分析

  结构分析采用有限元程序SAP91进行三维空间计算,包括整体分析、稳定分析等,用桥梁专用平面分析程序PRPB和BSACS分别进行了验算。在计算时桥面以上主拱拱肋除按钢管混凝土设计外,还用类似于钢筋混凝土构件的方法进行施工计算,在截面形成阶段采用应力叠加法设计。钢管的套箍系数取0.8。

  3.1施工阶段计算

  本桥施工体系转换分五个阶段进行,施工中中孔利用既有铁路钢桥作支架,待新桥建成后拆除既有桥。

  第一阶段:在支架上现浇两边段(立柱、拱、横梁)及全桥边纵梁,待混凝土达到强度后每片边纵梁内张拉两根预应力束。

  第二阶段:将工厂内制造的主拱肋钢管,每侧7段,运到工地,在边纵梁上搭设支架拼装就位。空钢管拱肋合拢后即封住主拱、纵梁结合处,再形成钢管混凝土截面。待主拱内混凝土达到设计强度后即开始张拉吊杆,给吊杆以初始张拉力,后锚固于主拱肋内。现浇中段横梁,待混凝土达到设计强度的90%后,张拉横梁预应力筋,浇全桥小纵梁,待混凝土达到设计强度后,张拉小纵梁内的预应力束。在每片边纵梁两端施加预应力,张拉两根预应力束。

  第三阶段:张拉边纵梁内T2及B2各一束,铺装中孔桥面板后,拆除中拱支架。

  第四阶段:拆除边拱支架,浇注全桥桥面板,张拉边纵梁内三根预应力束。

  3.2成桥阶段计算

  进行以下几方面的计算:

  1.二期恒载按换算均布荷载分担到横梁和纵梁上;

  2.支座沉降计算;

  3.温度变化计算;

  4.活载为轻轨列车荷载,每列最多八节,每节8轴,重车轴重170kN,轻车轴重80kN,双线荷载;

  5.计算承轨台在成桥后三个月、六个月、一年、三年的徐变变形量。

  3.3稳定性分析

  在本桥的稳定性方面,设计时考虑两片主拱之间加设三道一字型风撑,拱肋基础连成整体。全桥整体稳定分析采用SAP93曲屈稳定分析程序进行计算,弹性稳定系数10-12。

  3.4桩基计算

  桩基设计从三方面控制:

  1.地基承载力控制:Nd=(up?fili+fipAp)/K;

  2.桩身强度控制:s?0.2R;

  3.沉降控制:满足轨道变形的要求,控制在2cm。

  最终沉降量采用分层总和法计算,将桩基承台桩群与桩之间土作为实体深基础,且不考虑沿桩身的压力扩散角,压缩层厚度自桩端全断面算起,至附加压力等于土的自重压力的20%处。

  沉降计算结果

上一篇:晒晒我的收获作文范文下一篇:国学对我的影响优秀作文