《列方程解决实际问题》教学反思

2021-03-07实用文

《列方程解决实际问题》教学反思

  身为一名到岗不久的老师,课堂教学是重要的任务之一,写教学反思可以快速提升我们的教学能力,优秀的教学反思都具备一些什么特点呢?下面是小编帮大家整理的《列方程解决实际问题》教学反思,欢迎大家分享。

《列方程解决实际问题》教学反思1

  虽然是第四年教学列方程解决实际问题,但教完第一课时仍觉迷惘,想想我对本单元的认识真是非常功利,认为本单元只要让学生学会两点,

  一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;

  二、列方程解答两、三步计算的实际问题。

  总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。

  回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。

失败之一:

  由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。

失败之二:

  没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。

  我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。

《列方程解决实际问题》教学反思2

  今天教学列方程解决实际问题,这个内容是在学生已经认识等式与方程,并学会应用等式性质解一步计算方程的基础上进行教学的。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。

  因为之前我们学习的是列方程并解答,今天这是解决实际问题,我是按“写设句——列方程——解方程”这样的步骤来引导学生的。其中最难的是让学生找出题中的等量关系,所以在教学之前我板书了2题应用题,专门和学生一起来分析数量关系,待学生知道怎样找数量关系后再进行本节课的教学,就容易了一些。

  出示本课例题后,我让学生认真读题审题并表述题意,请他们找出题中的数量关系。大部分学生找出的数量关系是“去年的体重+2.5=今年的体重”,还有学生找出“今年的体重-去年的体重=2.5”。关于如何解设的,我是先让学生看书自学,然后根据自己找出的数量关系列方程进行解答。结合介绍我板书出设句,以示范书写格式。列出方程后,我鼓励学生通过独立思考,求出所列方程的解,最后要求学生写出答句。“今年的体重-去年的体重=2.5”根据这个数量关系列出的方程是“36-2.5=Χ”我告诉学生这样列方程不能体现列方程解决实际问题的特点,所以一般不要这样列。

  一节课下来,整个解决问题的流程和步骤学生已经掌握了,但是对于题中的等量关系还有些生疏,列方程解答已经没有问题了。下节课要重点练习找应用题中的等量关系,因为只有会找题中的等量关系,才能列出正确的方程,加强练习,争取使学生能熟练解答此类应用题。

《列方程解决实际问题》教学反思3

  列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的`解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。

  六年级数学(上册)的第一单元就是在学生五年级学过的解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:

一.重视关键句分析训练,提高学生的分析能力。

  解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。

二.重视学生的语言训练,提高学生的表达能力。

  在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。

  在教学例2时我通过出示学生熟悉的生活素材:六(1)班有学生48人,男生是女生人数的1。4倍。让学生独立思考和讨论找出题目中的相等关系,学生根据全班48人,知道用“男生人数+女生人数=全班人数”的相等关系,再结合“男生是女生人数的1。4倍。”把题目中的女生人数看做1倍数,那么男生人数就是1。4倍数,如果用x表示女生人数,那么男生人数就是1。4x,这样方程就很快列出来:1。4x+x=48;

  如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。

  通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。

三.重视学生的综合训练,提高学生的整体思维。

  在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。

  在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2。5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。

  教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。

上一篇:小班老师教学反思随笔8篇下一篇:《列方程解决实际问题》教学反思范文