因数在我们在小学数学课本里面学习到的。大家是否有印象的呢,求因数的方法总结怎么写,我们来看看。
求因数的方法总结怎么写一
兴化市林潭学校四(1)刘航
学习“倍数和因数”这一单元后,知道了一个数的倍数是无限的,一个数的因数是有限的。如何找一个数的因数呢?根据老师的方法,我采用一一对应法。
例如,找36的因数,就一组一组地排出乘积是36的两个数,为了做到不重复、不遗漏,利用乘法算式,1×36=36,2×18=36,3×12=36,4×9=36,6×6=36,这样36的因数有(1,2,3,4,6,9,12,18,36)共9个;也可以利用除法算式,一组一组地找,碰到相同的一对因数时,只要写一个。
但在要找出一个较大数的所有因数时,往往心中无底,不知这个较大数的因数是否找全。老师强调过,找一个数的因数,哪怕是遗漏一个也不行。我就很想找一个方法检查是不是找全。无独有偶,一次在学校图书室,发现一本《小学生数学报10年精选本》(丛书)《学习辅导篇》有一篇《怎样算一个合数的约数的方法》。文中介绍说:要求一个合数的约数的个数,可以先把这个数分解质因数,然后把不同的质数的个数加1连乘起来,得到的结果就是这个合数的约数个数。“约数” 、“质数”老师说过就是我们现在所学的“因数” 、“素数”。 “分解质因数”我不懂,后来在老师的指导下,知道了“分解质因数”就是将一个合数分解成几个素数相乘的形式。
例如,找75的约数的个数
先将75分解质因数:75=3×5×5
75是由1个3和2个5相乘得到的,3有一个即(1+1),5有2个即(2+1)75的约数的个数:(1+1)×(2+1)=2×3=6(个)
检验一下36的因数:36=2×2×3×3,2个2,2个3,(2+1)×(2+1)=9
(个)
现在,我再也不担心找不全一个数的所有因数了。看来,只要我们做学习上的有心人,就能解决很多数学问题。