求极限方法总结

2018-07-22总结

  导语:假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。以下是小编整理求极限方法总结的资料,欢迎阅读参考。

  为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先对极限的总结如下:

  极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致

  1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)

  2解决极限的方法如下:(我能列出来的全部列出来了你还能有补充么???)

  1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记

  (x趋近无穷的时候还原成无穷小)

  2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)

  首先他的使用有严格的使用前提

  必须是 X趋近 而不是N趋近(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件

  (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷)

  必须是 函数的导数要存在(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死)

  必须是 0比0 无穷大比无穷大

  当然还要注意分母不能为0

  落笔他 法则分为3中情况

  1 0比0 无穷比无穷 时候 直接用

  2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了

上一篇:离子半径方法总结下一篇:清理总结写作方法