椭圆及其标准方程教学反思

2021-02-05教学反思

椭圆及其标准方程教学反思范文(通用5篇)

  身为一位优秀的老师,我们要有一流的教学能力,写教学反思能总结我们的教学经验,那么什么样的教学反思才是好的呢?下面是小编精心整理的椭圆及其标准方程教学反思范文(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

  椭圆及其标准方程教学反思1

  任何概念的学习,如有可能,我们当然希望学生在问题情境中,在解决问题的过程中,成为催生新知的主力军.限于椭圆概念的特殊性,我对问题情境的创设,通过两个角度:从形的角度和数的角度来加以引入,实现了由学生催生新知的初衷。

  椭圆的定义教学中,画出椭圆轨迹,完全是意外的惊喜,采用根据定义“先画后展”的处理方式,突显了知识主题,符合学生认知规律,推动了课堂发展,进而通过类比圆的标准方程的推导,给出椭圆的标准方程的推导步骤。椭圆方程的化简,对于学生而言是困难的,但不管怎么困难,教师也不可越俎代庖.为了突破这个难点,我们在曲线与方程的教学过程中,引导学生小组合作进行化简,并进行了实际操作.在课堂上,督促学生运用既有策略进行独立的推导化简,通过巡视,指导仍有困难者,训练学生的代数运算能力.此处的训练对于增强学生的自信和毅力有着重要的意义。

  类比学习方法是本节课的主线,而数形结合又是本节课的主调,解析法则是本节课的主要原理方法。

  另外,以后的教学中,应该更多的加强学生合作探究的能力,减少教师的讲解,从而能为学生提供更多的合作机会。

  椭圆及其标准方程教学反思2

  椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。

  在第一课时中我从书中的小实验出发给学生演示并重点讲解动点在运动的过程中始终保持不变的几何特征即到两个定点的距离之和为定值(绳长)并通过改变两个定点的距离让学生直观体会椭圆的圆扁度与定点距离的关系,并提出思考若绳长和定点的距离相等及大于绳长时动点的轨迹又是什么?随后通过对学生分组进行讨论及总结给出定义;我在此时结合图形强调这个定值一定要大于两个定点的距离的理由,随后提出坐标法的基本思想并带着学生回顾动点轨迹方程的一般求法然后提出问题:椭圆的方程是什么引入第二部分即标准方程的推导;在推导椭圆标准方程时重点讲清楚坐标系的建立过程,并让学生总结建系的方法及原则;在椭圆标准方程的推导过程中由于是带有两个根式的方程化简对于我们学校的学生来说基础比较弱可能从来没遇到过,因此主要通过我在黑板上的推导及演算让学生看清过程,掌握推导方法并及时对动点轨迹方程的一般求法步骤再次进行学习引导并进一步深入总结。

  得到椭圆标准方程后,让学生重点分析两个问题,第一个就是课本中的探究活动,让学生在图形中找到b的几何意义,并强调a>b>0;a>c>0b,c大小关系不确定;第二个就是提出方程的建立与坐标系有关,不同的坐标系方程是不同的,引出学生对焦点在y轴上的椭圆标准方程的推导产生兴趣,并自我完成推导过程,并通过分组讨论总结完成对椭圆标准方程推导。最后通过课本例1让学生初步体会椭圆定义及标准方程的应用。

  本节课的重点是椭圆的定义及标准方程的推导,难点是标准方程推导过程中的建系过程和方程化简过程。在椭圆定义的教学中我充分运用多媒体演示及课堂学生的动手试验突出椭圆定义中到两个定点的距离为什么要大于两个定点的距离;另一方面从图形出发让学生注意三角形两边之和大于第三边也可以解释;在标准方程建立的过程中建系是难点,学生很难入手,在这里我充分引导学生建系的目的是用坐标表示点,用方程表示曲线,引导学生关注两个定点的坐标及距离公式好表示,并强调建系要关注椭圆的对称性。在推导完方程后通过不同的坐标系让学生观察分析方程的推导变化进一步体会坐标系建立过程中关注点的坐标及曲线的对称性的重要性。

  在方程化简过程中我同过课堂上学生自主推导焦点在y轴上的标准方程进一步让学生自己体会化简的过程和运算技巧,让学生能初步的解决类似问题,本节课我采取做,讲,练结合,师生之间有充分互动的过程,学生能从做实验,听讲解,自主练习的过程中体会椭圆标准方程的获得过程,能够从中体会发现和发明的乐趣并对知识的产生过程有很深入的体会,真正的做到了学生为主体,教师为主导的教学理念。

  椭圆及其标准方程教学反思3

  今日上了一节椭圆及其标准方程的课。同学们基本上按照之前的要求,带来了绳子,这绳子是用来画图用的,即是教学设计中提到的第一步,利用绳子和笔,几个人一起合作画图。内容倒是较为简单,但是大多数学生受到教材的影响,有的'自己根本没有画或者是话的时候也不认真,就直接告诉我答案了。虽然说画出来的图形应该有两类,椭圆和线段,但是学生大部分直接说出了椭圆,因为本节内容是椭圆。

  很多时候书上的内容是否需要用引子引出来的确是个问题,学生自己不可能不提前看书,而且看的内容还比较多。但是这些内容,学生有的似懂非懂,老师讲的时候感觉自己深切体会了,其实不然,自己还是不太清楚,只是因为教材那样写了,参考书有那些结论,学生跟着附和,当然也不排除真的懂得。但是滥竽充数的还是有的,甚至有些学生并没有参与到充数中去,而是默默的看着老师,希望老师多给点说明。

  教材上的内容如果不提,学生又不可能完全预习过,正是因为如此参差不齐的预习程度,使得教师在上课的时候对于上课内容的把握增加了难度。有的很简单,却花了很多时间去说明,有的是难点,却轻轻带过了。对于这些问题,作为教师还是应当多分析一下学情,走近学生,了解他们的预习状况,同时自己对于教学内容的重点也应当多多思考,要从学生的角度思考问题。

  虽然开始设计的让学生亲自动手操作画图,但是课堂中的实际情况确实事与愿违,学生不仅没有真正的认真参与,而且把画图的这点时间用来嬉笑了。虽然现在提倡学生参与的课堂,但是学生的动手能力不是从高中才应该培养的,而应该是从小开始就应该培养的,高中的一节课一个瞬间也许没有多少效果,或者说是在“浪费了”宝贵的课堂时间。因为学生和教师都没有合理运用这里的实操时间,实际操作的效果没有真正达到。

  我不反对课堂的学生动手操作,但是实际情况却很难展开,一来教材已经给了相应的操作结果,二来学生动手能力的确很欠缺,再加上学生自制力差,在操作过程中难免会出现说话聊天等与教学活动无关的事情。

  学生在课堂上进行操作肯定是多多提倡的,这也是素质教育的体现,只不过我们应该把握好实际动手的时间,并不是没结果都要有大部分时间进行实操,因为数学课毕竟还是一门较为严谨的理论学科,年级越高,数学内容就越抽象。而且也需要每一位老师的一点付出,这样学生的操作能力锻炼的机会才不会在某个地方就没了。

  同时实际操作的活动出现不太理想效果的原因还包括教师自身对课程的设计,没有把握好学生应当进行的活动的度,没有选好让学生参与的活动。同时既然选择了让学生自己动手,那就不要担心教学时间被活动耽误了,学生参与了,收获也许是无尽的,在以后的某一天学生还能想起来高中的某一次课上活动。

上一篇:《等差数列的前n项和》的说课稿下一篇:高中数学《椭圆及其标准方程》教案