八年级数学上册《三角形全等的判定一》教学反思

2018-10-11教学反思

  一、课前的准备与预设

  课题:三角形全等的判定(一)(复习课)

  教学目标:

  1、知识目标:使学生进一步熟悉三角形全等的判定定理1的内容,加深对等腰三角形性质的理解,达到学生系统获取知识的目的。

  2、能力目标:通过一题多变,培养学生的发散思维能力,让学生善于观察图形,积极进行直觉猜想,提高学生分析问题、解决问题的能力。

  3、情感目标:培养学生敢于发现的探索精神,实事求是的科学精神和勇往直前的进取精神。

  教学重、难点:从复杂多变的图形中探究满足定理的条件。

  教学方法:以“引导──探究”为主,“启发──讨论”

  教学思路:首先,课前,教师给出复习提纲,让学生带着问题自学教材P--P(三课时);其次,围绕本节课的复习内容,要求每位同学撰写一篇小论文;第三,上课时,先由学生结合论文总结知识要点,然后从P例2展开,通过“连接BC、EF”两次辅助线,让学生寻找全等三角形(为说明方便,把BF、CE交点记为O)。再用“SAS”证明△BEO≌△CFO受挫后,用剪纸的方法发现它们的确重合,为教学“ASA”埋下伏笔。

  例2、已知,如图,AB=AC,E、F分别是AB、AC上的点,且AE=AF。

  求证:△ABF≌△ACE

二、课中的生成与处理

  在上这节课时,并没有按笔者的设计方向发展。自然,设计中的“连接BC”,经讨论,分别有两学生论证了△ABF≌△ACE和△BCE≌△CBF。接着,我对条件中的“AE=AF”加上着重号,让学生仿照上面做法,对图形稍作变化(意在提醒“连接EF”)编一道几何题。话音刚落,一生举手发言:“我把△AEC绕点A旋转一定角度,此题就变成了P的例4”。另一生紧接着说:“作射线AO交BC边于D点,则AD是∠BAC的角平分线,图中有更多的全等三角形。”这时我心中不禁为之一震,我为课前的粗浅设计和公开课上出这样的意外情况而震惊!更为学生的发散思维而折服!

  怎么就没有学生站起来说连接EF呢?该如何是好?是用“这两种编法留到课后大家讨论”搪塞过去,按原计划讲完这节课?还是按学生思路探索结论?如果这样探索下去,这节课内容是完成不了的;如果阻止学生探索,岂不扼杀了学生的求知欲望和创新意识?

  这个问题的实质就是当前教学改革中面对的以传授知识为中心,还是以培养能力为中心;以教师为中心,还是以学生为中心;重解题的发展、探索过程,还是重固有知识的运用;是提高学生的整体素质,还是增加学生知识的素质教育问题。换言之,执教者是采取按照事先预设好的思路,把学生一步一步地引向窄小的通道,这种注入式的传统教学模式进行教学,还是采取让学生自主发展、自我探究的这种“设疑---探究---解答”的开放式教学模式进行教学,这也是运用传统教学观,还是现代教学观指导课堂教学的问题。

  于是我果断地改变了原来的教学设计,肯定和表扬这两个学生的编法,继续探究问题的解决思路。问:“AD为什么是∠BAC的角平分线呢?”问题一放开,学生的思路也开阔了。一学生马上回答:“因为△BCE≌△CBF,所以∠OCB=∠OBC,所以OB=OC”(原来,“等腰三角形的判定”他也自学了!)再利用“SAS”证明△ABO≌△ACO”,所以∠BAO=∠CAO。受其启发,另一学生说也可以用“SSS”证明△ABO≌△ACO。这样一来,学生的积极性更高涨了。又有一学生说用“SAS”证明△AEO≌△AFO也可以达到目的。此时,有一学生可能太激动,说:“老师,我要编一题:请问图中有哪些相等的线段、相等的角?”……这节课在热烈的气氛中结束。

上一篇:《共产儿童团团歌》个人教学反思下一篇:高三物理教学工作的回顾与反思