六年级数学下册《圆柱与圆锥》教学设计

2020-04-13教学设计

  1、圆柱

(1)圆柱的认识

教学目标:

  1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

  2、培养学生细致的观察能力和一定的空间想像能力。

  3、激发学生学习的兴趣。

教学重点:认识圆柱的特征。

教学难点:看懂圆柱的平面图。

教具准备:学生准备圆柱,师自制圆柱体侧面展开纸,一张长方形纸。切好的圆柱形萝卜,水果刀。

教学过程:

一、复习

  1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)

  2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)

  (1)半径是1米      (2)直径是3厘米

  (3)半径是2分米     (4)直径是5分米

二、认识圆柱特征

  1.整体感知圆柱

  (1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)

  (2)找找圆柱,请同学找出生活中圆柱形的物体。

  2.圆柱的表面

  (1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?

  (2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)

  3.圆柱的高

  (1)一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?

  (2)引导小结:水柱的高低和水柱的高有关.

  (3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)

  (4)讨论交流:圆柱的高的特点。

  ①装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?

  ②初步感知:面对圆柱的高,你想说些什么?

  归纳小结并板书:圆柱的高有无数条,高的长度都相等。

  ③深化感知:面对这数不清的高,测量哪一条最为简便?

  老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时上的圆柱体闪烁边上的一条高.也可以用笔筒来教学圆柱的高。

  4.圆柱的侧面展开(例2)

  (1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.

  (2)寻求发现.展开的长方形的长和宽与圆柱的关系.

  ①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

  ②学生再观察上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)

  ③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  (3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。

  ①讨论:平行四边形能否通过什么方法转化成长方形?

  ②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?

  ③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.

三、巩固练习

  1.做第11页“做一做”,指出圆柱体的底面,侧面和高。

  2.做第15页练习二的第2题找出圆柱体。

  3.15页第3题,想一想,折一折,能得到什么图形。

  3.做第15页练习二的第4题。教师行间巡视,对有困难的学生及时辅导。

四、布置作业

  完成一课三练P15的1、2题。

(2)圆柱的表面积

教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面积的含义的同时,培养学生的理解能力和探索意识。

教学重点:掌握圆柱侧面积和表面积的计算方法。

教学难点:运用所学的知识解决简单的实际问题。

教学过程:

一、复习

  1.指名学生说出圆柱的特征.

  2.口头回答下面问题.(删掉)

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽.

  3. 理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

二、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2.侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题:

  ① 这两道题分别已知什么,求什么?

  ② 计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  4.教学例4

  (1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ① 侧面积:3.14×20×28=1758.4(平方厘米)

  ② 底面积:3.14×(20÷2)2=314(平方厘米)

  ③ 表面积:1758.4+314=2072.4≈2080(平方厘米)

  5.小结:

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

上一篇:三年级数学下册《数学广角》教学设计的内容下一篇:人教版六年级六年级数学下册教学设计:认识圆柱