分数乘整数的教学设计

2018-11-30教学设计

  分数乘整数教学设计(一)

  教学目标:

  1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

  3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:总结分数乘整数的计算方法。

  教学过程:

  一、创设情境,提出学习目标。

  1、 创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?

  比赛题目为:3个 3/10 相加的和是多少?6个 3/10 相加的和是多少?

  师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?

  2、提出学习目标

  让学生先说一说,再出示学习目标:

  (1)分数乘整数的计算方法。

  (2)分数乘整数的意义与整数乘法的意义是否相同。

  二、展示学习成果

  1、小组内个人展示

  学生独立自学课本8—9页例1、例2,完成“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)

  2、全班展示

  (1)算法展示。

  生1:利用乘法与加法的关系进行计算。

  2/15×4=2/15+2/15+2/15+2/15=8/15

  生2:先计算出结果,再进行约分。

  5/12×8=5×8/12=40/12=10/3=

  生3:在计算过程中能约分的先约分,再计算。

  2×3/4=3/2 2与4先约分,再计算。

  (2)比较三种计算方法,选择最优算法。

  通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

  (3)错例展示:

  错例1:学生把整数与分子进行约分。 错例2:学生没把计算结果约成最简分数。

  3、学生质疑问难,激发知识冲突。

  (1)针对同学的展示,学生自由质疑问难。

  (2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?

  4、引导归纳分数乘整数的计算法则。

  分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变;能约分的先约分,再计算。

  三、拓展知识外延

  1、完成课本12页练习二第1、2题。

  2、生活中的数学

  (1)一个正方形的边长是 4/3dm,它的周长是多少dm?

  (2)老师从家到学校要步行10分钟, 如果每分钟步行 2/25千米,老师每天要走两个来回,每天一共要走多少千米?

  四、总结反思,激励评价。

  五、布置作业:

  1、列式计算

  (1)3个2/5是多少?

  (2)7/12的6倍是多少?

  (3)5/14扩大7倍以后是多少?

  ( 4)3/16与24的积是多少

  2、智力冲浪:用12个边长都是 dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(A类同学做)

分数乘整数教学设计(二)

  教学目标

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

  教学重点

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

  教学难点

  引导学生总结分数乘整数的计算法则。

  教学过程

  一、设疑激趣

  (一)下面各题怎样列式?你是怎样想的?

  5 个12 是多少?10 个23 是多少?25 个70 是多少?

  (概括:整数乘法表示求几个相同加数的和的简便运算)

  (二)计算下面各题,说说怎样算?

  + + = + + =

  说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

  同学之间交流想法: + + = = =

  ×3 这个算式表示什么?为什么可以这样计算?

  教师板书: + + = ×3=

  为什么只把分子与整数相乘,分母10 不和3 相乘?

  二、提出问题

  (一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?

  1、读题,说说 块是什么意思?

  2、根据已有的知识经验,自己列式计算

  三、解决问题

  (一)学生汇报,并说一说你是怎样想的?

  方法1 : + + = = = (块)

  方法2 : ×3= + + = = = = (块)

  (二)比较这两种方法,有什么联系和区别?

  联系:两种方法的结果是一样的。

  区别:一种方法是加法,另一种方法是乘法。

  教师板书: + + = ×3

  (三)为什么可以用乘法计算?

  加法表示3 个 相加,因为加数相同,写成乘法更简便。

  (四) ×3 表示什么?怎样计算?

  表示3 个 的和是多少?

  + + = = = = ,用分子2 乘3 的积做分子,分母不变。

  (五)提示:为计算方便,能约分的要先约分,然后再乘。

  四、归纳、概括:

  (一)结合 = ×3= 和 + + = ×3= ,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。

  (二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

  五、拓展应用

  (一)基本练习

  1、改写算式

  + + + = ( )×( )

  + + + + + + + = ( )×( )

  2、只列式不计算:3 个 是多少? 5 个 是多少?

  3、计算(说一说怎样算)

  ×4 ×6 ×21 ×4 ×8

  思考:为什么先约分再相乘比较简便?

上一篇:最后的姿势的教师教学设计下一篇:《安塞腰鼓》教学设计三篇