说课稿是为进行说课准备的文稿,它不同于教案,教案只说“怎样教”,说课稿则重点说清“为什么要这样教”。下面是小编整理的圆的面积优秀说课稿,希望对大家有帮助!
圆的面积优秀说课稿1
说课内容:冀教版六年级数学上册圆的面积(87—89页)
教材分析:本课是在认识了圆,探索并掌握了长方形、平行四边形、三角形、梯形等面积计算公式的基础上学习的。
通过本课的学习,让学生经历探索圆的面积公式的全过程。
学情分析:学生已经初步认识了圆,掌握了长方形、平行四边形、三角形、梯形等面积计算公式,经历过将平行四边形、三角形、梯形等转化成学过的图形推导面积公式的过程。但对极限思想缺乏认识。
教学目标:
1、知识技能:经历估算、小组合作操作、讨论等探索圆的面积公式的过程。
2、数学思考:在观察、猜想、验证等活动中,体会转化思想和极限思想。
3、问题解决:理解并掌握圆的面积公式,能运用公式解答一些简单的实际问题。
4、情感态度:体验圆面积公式推导的探索性和结论的确定性。
教学重点:掌握圆的面积公式,能运用公式进行计算。
教学难点:圆面积公式的推导过程。
教具准备:课件、平均分成16等份的圆形纸片。
教学流程:
一、创设情境 ,揭示课题。
二、动手操作 ,探索公式。
三、解决问题 ,巩固提高。
四、回馈总结 ,形成体系。
教学过程:
一、创设情境 ,揭示课题。
1、出示飞标板让学生观察:说一说发现了什么?
(飞标板被平均分成了20份,每份都像一个小三角形。)
2、“如果r=10cm,你能利用我们学过的知识估算飞标板的面积吗?”让学生讨论。
3、交流、汇报估算的方法和结果。
(把飞标板看作由20个小三角形组成的,每个小三角形的底约是圆周长的1/20,高近似看作圆的半径。先求出一个三角形的面积,再求出20个小三角形的面积。)
4、飞标板是圆形的,刚才我们估算了它的面积,既麻烦也不一定准确。我们能否推导出圆的面积公式来解决这样的实际问题呢?揭示课题。(圆的面积)
二、动手操作 ,探索公式。
(一)猜想。
1、回忆以前学过图形面积是利用什么方法推导的?
(利用“割补法”把平行四边形转化成长方形;把两个完全一样的三角形、梯形拼成平行四边形……把没学过的图形转化成我们学过的图形推导出来的。)
(设计意图:让学生回忆旧知,引导学生应用旧知类比迁移。这样既实现了有意识的学法指导,又帮助学生找到了解决问题的策略。)
2、猜想:圆能转化成什么图形?(长方形、平行四边形、三角形、梯形)
(二)验证。
1、小组合作:把圆形纸片剪拼、转化成学过的图形。
(设计意图:给学生提供了自主剪拼的时空,也有意识地给学生提供了解决问题的方法和途径。分组操作,更能有效地激发小组成员的干劲,促进不同层次的学生在原有水平上得到提高和发展)
2、展示学生作品。
3、寻求联系:同学们把圆形转化成了学过的平行四边形、梯形、三角形,不管转化成哪种图形,什么是始终不变的?(面积)
4、今天我们就以拼成的平行四边形为例,来探讨圆的面积公式。
“如果我们把这个圆继续分下去,32等份、80等份、400等份……拼成的图形又会怎么样?”
(课件展示)得出结论:平均分的份数越多,拼出的图形就越接近长方形;当平均分的份数无限多时,拼出的图形就是长方形。(渗透极限思想)
(三)总结。
1、小组讨论:拼成的长方形的长和宽与原来圆有什么联系?
2、交流汇报,总结概括圆的面积公式。
3、同学们通过猜想、验证、自己发现了面积公式,真了不起!课后同学们还可以继续研究把圆转化成梯形、三角形的情况,看看谁能推导出圆面积的计算公式呢?
(设计意图:在这个探索过程中,学生不仅体会了转化思想还认识了极限思想,拓展延伸给学生思维的发展留下了足够的空间。)
(四)应用。
上课伊始我们估算了飞标板的面积,现在请同学们利用圆面积公式,计算飞标板的面积。
(设计意图:利用公式计算,体会用公式计算的准确与便捷。)
三、 解决问题 ,巩固提高。
1、数学诊所:
(1)半径是2厘米的圆,它的周长和面积相等。( )
(2)()X2=2X*( )
(3)圆的半径扩大到原来的3倍,圆的面积也扩大原来的3倍。( )
2、“练一练”第1题,计算下列圆的面积。
3、练一练第2题。学生自己读题并解答。
一个圆形旋转展台,台面半径为3米,台面的面积是多少平方米?
四、回馈总结,形成体系。
1、通过本节课的学习有哪些收获?你是怎样学到这些知识的?
2、教师小结:今天我们一起研究了圆的面积,成功地推导出了圆的面积公式,并学会了应用。希望同学们在今后的学习中能更好的地运用转化、极限的思想方法去学习更多的数学知识。
(设计意图:小结体现学法指导,使学生有“学会”转化为“会学”,促使学生实现认知上得飞跃。)
圆的面积优秀说课稿2
一、说教材
1.教材分析
本课从一个喷水头转动可以浇灌多大面积的农田的实例出发,结合学生的生活经验引出圆的面积知识。
在此之前,学生已经学过了圆的周长等有关概念、公式,在这个基础上,学好本节课,掌握圆的面积公式和有关计算,可为学生今后学习和圆有关的图形的面积奠定基础。特别是在圆的面积的推导过程中,可对学生进行极限思想的渗透。
2.教学目标
素质教育背景下的数学教学应以学生发展为根本,培养学习能力为重点,同时要强化应用意识,所以本节课确定如下教学目标:
(1)了解圆的面积的含义,经历圆面积公式的推导过程,掌握圆面积计算公式。
(2)能正确运用公式计算圆的面积,并能运用圆面积知识解决一些简单的实际问题。
(3)在“估一估”和探究圆面积公式的过程中,体会“化曲为直”的极限思想。
3.重点与难点
重点:能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
难点:“化曲为直”的极限思想的理解。
二、说教法、学法
1.教法分析
针对学生年龄特点和心理特征,以及他们现在的知识水平,采用启发式、小组合作等教学方法,让尽可能多的学生主动参与到学习中来。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”,一起思考问题,一同体验成功的喜悦,创造一个轻松、高效的学习氛围。
2.学法指导
通过实例引入,引导学生关注身边的数学;在借助长方形面积公式来推导圆的面积公式的过程中,让学生通过观察、归纳、联想、转化等学习方法,动口、动手,动脑,培养学生学习的主动性和积极性。
3.教学手段
为了更好地展示数学的魅力,我结合多媒体辅助手段,充分地调动学生的感官,增加学习的形象感与趣味性,并且给学生留有足够的思考和交流的时间和空间,使学生成为课堂的主人。
三、说教学过程
1.创设问题情景,引入课题。
出示课件让学生观察并说说从图中能发现什么数学信息,使学生在具体情境中了解圆面积的含义,体会到研究圆面积的必要性。
2.探究思考,解决问题:估计圆的面积有多大。
通过探究和思考使学生进一步体会到面积度量的含义,感受“化曲为直”的思想,同时培养学生的估计意识。
3.旧知引入,探索新知。
从已学过的知识入手让学生思考:平行四边形面积可以转化成长方形面积,那么圆的面积计算是否也可以转化成长方形面积来解决呢?引导学生利用准备好的圆片转化成为长方形,通过实际操作活动使学生体会“化曲为直”的思想。然后进行动画展示,让学生闭起眼睛想一想是不是分得的份数越多,拼成的图形越接近于长方形。启发学生思考:既然圆的面积无限接近于长方形,那么我们如何根据长方形的面积来推导圆的面积公式?长方形的长、宽与圆有什么关系呢?接下来再次播放动画,师生共同总结圆的面积公式。
在这个过程中,运用多媒体演示动画,可以揭示出数学知识的内在规律的科学美,激发学生探求知识奥秘的欲望,消除学生学习时产生的疲劳感,提高学习效率。
4.实际应用。
鼓励学生运用所学公式进行计算,解决生活中的一些实际问题。这样既注重对基本技能的训练,又关注学生的思考;既引导学生运用探索结果解决问题,又引发学生对探索过程的关注。
5.归纳小结。
为了使学生对所学的知识有一个完整而深刻的认识,利用提问形式,从几方面进行小结,学生回答后教师归纳总结,充分发挥学生的主体作用。
四、说板书设计
在板书设计上,力求简洁扼要,突出重点,帮助学生理解和建构新的知识。
纵观整节课的教学,学生一直处于探索之中,从提出问题合理猜想到主动探索、推导结论,都在“圆的面积与长方形面积有什么关系”这一主线的引领下前后融为一体,又互为验证。整个过程不仅是一个知识再创造的过程,更是一个科学发现的过程。